Программа для расчета призмы возможного обрушения. Что такое бермы безопасности

sliding wedge ) - неустойчивая часть массива уступа со стороны его откоса, заключённая между рабочим и устойчивым углами откоса уступа .

Понятие призмы обрушения используется при расчётах откосов , устойчивых к обрушению и предотвращения оползней .

См. также

Напишите отзыв о статье "Призма обрушения"

Примечания

Литература

  • А. З. Абуханов, «Механика грунтов»
  • Шубин М. А. Подготовительные работы при сооружении земляного полотна железной дороги. - М .: Транспорт, 1974.

Ссылки

  • // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). - СПб. , 1890-1907.

Отрывок, характеризующий Призма обрушения

После того как гусары въехали в деревню и Ростов прошел к княжне, в толпе произошло замешательство и раздор. Некоторые мужики стали говорить, что эти приехавшие были русские и как бы они не обиделись тем, что не выпускают барышню. Дрон был того же мнения; но как только он выразил его, так Карп и другие мужики напали на бывшего старосту.
– Ты мир то поедом ел сколько годов? – кричал на него Карп. – Тебе все одно! Ты кубышку выроешь, увезешь, тебе что, разори наши дома али нет?
– Сказано, порядок чтоб был, не езди никто из домов, чтобы ни синь пороха не вывозить, – вот она и вся! – кричал другой.
– Очередь на твоего сына была, а ты небось гладуха своего пожалел, – вдруг быстро заговорил маленький старичок, нападая на Дрона, – а моего Ваньку забрил. Эх, умирать будем!
– То то умирать будем!
– Я от миру не отказчик, – говорил Дрон.
– То то не отказчик, брюхо отрастил!..
Два длинные мужика говорили свое. Как только Ростов, сопутствуемый Ильиным, Лаврушкой и Алпатычем, подошел к толпе, Карп, заложив пальцы за кушак, слегка улыбаясь, вышел вперед. Дрон, напротив, зашел в задние ряды, и толпа сдвинулась плотнее.
– Эй! кто у вас староста тут? – крикнул Ростов, быстрым шагом подойдя к толпе.
– Староста то? На что вам?.. – спросил Карп. Но не успел он договорить, как шапка слетела с него и голова мотнулась набок от сильного удара.
– Шапки долой, изменники! – крикнул полнокровный голос Ростова. – Где староста? – неистовым голосом кричал он.

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

Вятский государственный университет

Факультет строительства и архитектуры

Кафедра промышленной экологии и безопасности

Б.И.Дегтерев безопасная организация земляных работ

Методические указания

к практическим занятиям

Дисциплина «Безопасность жизнедеятельности»

Печатается по решению редакционно-издательского совета Вятского государственного университета

УДК 658.345:614.8(07)

Дегтерев Б.И. Безопасная организация земляных работ. Методические указания к практическим занятиям по дисциплине «Безопасность жизнедеятельности». – Киров: Изд-во ВятГУ, 2010. – 12 с.

В методических указаниях рассмотрены основные причины производственного травматизма при ведении земляных работ. Даны методики расчета профилей откосов и крепления стенок котлованов и траншей. Приведены необходимые справочные материалы, представлены иллюстрации. Составлены задания для расчетов.

Подписано в печать Усл. печ. л.

Бумага офсетная Печать матричная

Заказ № Тираж

Текст напечатан с оригинала-макета, представленного автором

610000, г.Киров, ул.Московская, 36

©Б.И.Дегтерев, 2010

©Вятский государственный университет, 2010

Построение профиля откоса. Расчет крепления стенок котлованов и траншей

Основными видами земляных работ в промышленном и гражданском строительстве являются разработка котлованов, траншей, планировка участков и т.д. Анализ травматизма в строительстве показывает, что на земляные работы приходится около 5,5% всех несчастных случаев; из всего количества несчастных случаев с тяжелым исходом по всем видам работ 10% связано с выполнением земляных работ.

Основная причина травматизма при земляных работах – обрушение грунта, которое может происходить вследствие:

а) превышения нормативной глубины разработки выемок без креплений;

б) нарушения правил разработки траншей и котлованов;

в) неправильного устройства или недостаточной устойчивости и прочности креплений стенок траншей и котлованов;

г) разработки котлованов и траншей с недостаточно устойчивыми откосами;

д) возникновения неучтенных дополнительных нагрузок (статических и динамических) от строительных материалов, конструкций, механизмов;

е) нарушения установленной технологии земляных работ;

ж) отсутствия водоотвода или его устройства без учета геологических условий строительной площадки.

1. Устройство откосов

Основными элементами открытой разработки карьера, котлована или траншеи без крепления являются указанные на рисунке 1 ширина l и высота h уступа, форма уступа (плоская, ломаная, криволинейная, ступенчатая), угол откоса α , крутизна откоса (отношение высоты откоса к его заложению h : l ).

Рис. 1 – геометрические элементы уступа:

h – высота уступа; l – ширина уступа; θ – угол предельного

равновесия откоса; α – угол между плоскостью обрушения и

горизонтом; АВС – призма обрушения; φ – угол естественного откоса

Установление безопасной высоты уступа, крутизны откоса и наиболее удобной ширины бермы является важной процедурой при разработке котлованов и траншей, от правильности выполнения которой зависит эффективность и безопасность производства земляных работ.

Производство работ, связанных с нахождением работников в выемках с откосами без креплений в насыпных, песчаных и пылевато-глинистых грунтах выше уровня грунтовых вод (с учетом капиллярного поднятия) или грунтах, осушенных с помощью искусственного водопонижения, допускается при глубине выемки и крутизне откосов, указанных в таблице 1 .

При напластовании различных видов грунта крутизну откосов назначают по наименее устойчивому виду от обрушения откоса.

Крутизна откосов выемок глубиной более 5 м во всех грунтах (однородных, неоднородных, естественной влажности, переувлажненных) и глубиной менее 5 м при расположении подошвы выемки ниже уровня грунтовых вод должна устанавливаться по расчету.

Таблица 1

Нормативная крутизна откоса при h ≤ 5 м по СНиП

Виды грунтов

Крутизна откоса h : l при глубине выемки до

Насыпные неслежавшиеся

Песчаные

Суглинок

Лессовые

Расчет может быть выполнен по методике Н.Н.Маслова, изложенной в . Во всех случаях устойчивый откос должен иметь профиль переменной крутизны, понижающейся с глубиной выемки. Методика позволяет учесть следующие факторы:

а) изменение характеристик грунта в его отдельных слоях;

б) наличие дополнительной пригрузки бермы откоса распределенной нагрузкой.

При расчете крутизну профиля откоса устанавливают для его отдельных слоев толщиной Δ Z = 1…2 м, которые должны быть привязаны к естественному напластованию слоев в данном грунте.

Схема построения профиля откоса показана на рисунке 2.

Расчетные формулы для координаты Х i , м, имеют следующий вид:

а) для общего случая нагруженной бермы (Р 0 > 0)

, (1)

Р 0

Х 0

Z i h

α i

X i

Рис. 2 – схема построения профиля откоса

б) для частного случая ненагруженной бермы (Р 0 = 0)

. (2)

В формулах (1) и (2) приняты обозначения:

А = γ · Z i · tgφ ;

B = P 0 · tgφ + C ;

γ – объемный вес грунта, т/м 3 ;

С – удельное сцепление грунта, т/м 2 ;

Р 0 – равномерно распределенная по поверхности откоса нагрузка, т/м 2 .

Результаты расчетов целесообразно свести в таблицу (табл. 2).

По данным вычислений строится профиль равноустойчивого откоса.

Таблица 2

Вычисление профиля равноустойчивого откоса по методике Н.Н.Маслова

Z i , м

γ· Z i , т/м 2

А , т/м 2

В, т/м 2

X i , м

α i

Задание 1

При выполнении земляных работ, связанных с разработкой котлована, возможно обрушение грунта и травмирование рабочих. Во избежание несчастного случая необходимо рассчитать допустимую крутизну откоса котлована при глубине 5 и 10 м для глинистого грунта.

Для котлована глубиной 5 м:

а) определить угол между направлением откоса и горизонталью и отношение высоты откоса к его заложению;

б) выполнить эскиз уступа котлована.

Для котлована глубиной 10 м:

а) провести расчет профиля равноустойчивого откоса, данные свести в таблицу по форме табл. 2;

б) по данным расчетной таблицы построить профиль откоса.

Исходные данные взять из таблицы 3.

Таблица 3

Исходные данные к заданию 1

Су-гли-нок

Су-гли-нок

Су-гли-нок

γ , т/м 3

С , т/м 2

Р 0 , т/м 2

Площадки, ограничивающие не рабочие уступы, называются – бермами. Различают предохранительные бермы, бермы механической очистки и транспортные бермы. Предохранительные бермы равны 1/3 расстояния по высоте между смежными бермами. Бермы механической очистки обычно больше либо равны 8 метров (для заезда бульдозеров для очистки осыпанной породы).

Транспортные бермы – это площадки, оставляемые на нерабочем борту карьера для передвижения транспортных средств. Предохранительные бермы – это площадки, оставляемы на нерабочем борту карьера для повышения его устойчивости и задержания осыпающихся кусков породы. Обычно они слегка наклонены в сторону вышележащего откоса уступа. Бермы должны оставляться не более чем через 3 уступа. Призма обрушения – это неустойчивая часть уступа между откосом уступа и плоскостью естественного обрушения и ограниченная верхней площадкой. Ширина основания призмы обрушения (Б) называется бермой безопасности и определяется по формуле: .

Порядок развития открытых горных работ

Порядок развития открытых горных работ в пределах карьерного поля не может устанавливаться произвольно. Он зависит от типа разрабатываемого месторождения, рельефа поверхности, формы залежи, положения залежи относительно господствующего уровня поверхности, угла её падения, мощности, строения, распределения по качеству полезных ископаемых и типов вскрышных пород. Дальнейшим следствием является выбор вида открытых горных разработок: поверхностного, глубинного, нагорного, нагорно-глубинного или подгорного. Дальнейшим нашим действием является принципиальное предварительное решение о карьерном поле – его возможных глубине, размерах по дну и поверхности, углах откосов бортов, а так же общих запасов гонной массы и полезных ископаемых в частности. Устанавливаются так же возможные места расположение потребителей полезных ископаемых, отвалов, хвосто-хранилищ и их ориентировочные вместимости, что позволяет наметить возможные направления и пути перемещения карьерных грузов. На основании вышеуказанных рассуждений устанавливаются возможные размеры карьерного поля, его местоположении в увязке с рельефом поверхности, а так же примерные контуры горного отвода будущего предприятия. Только после этого с учётом планируемой мощности карьера приступают к решению задачи о порядке развития горных работ в пределах карьерного поля. Для ускоренного ввода карьера в эксплуатацию и сокращения уровня капитальных затрат горные работы начинают вести там где залежь полезного ископаемого находится ближе к поверхности. Главная цель открытых горных работ – добыча из недр полезных ископаемых с одновременной выемкой большого объёма покрывающей и вмещающей залежь вскрышных пород достигается при чёткой и высокоэкономичной организации ведущего и наиболее дорого процесса открытых горных работ – перемещение горной массы из забоев в пункты приёма на складах и отвалах (до 40%). Эффективность перемещения карьерных грузов достигается организацией устойчиво действующих потоков полезных ископаемых и вскрышных пород применительно к которым решаются вопросы вскрытия рабочих горизонтов карьерного поля, а так же и мощностей используемых транспортных средств. Технические решения при открытой разработке месторождений и экономические её результаты определяются соотношениями объёмов вскрышных и добычных работ в целом и по периодам деятельности карьера. Количественная оценка этих соотношений производится с применением коэффициента вскрыши.

Крутые траншеи и полутраншеи

По углу наклона капитальные траншеи делятся на крутые. Крутые траншеи глубинного вида обычно имеют внутреннее заложение. По расположению относительно борта карьера они подразделяются на поперечные и диагональные. Поперечные крутые траншеи применяются в тех случаях когда общий угол откоса борта карьера меньше. Диагональные крутые траншеи обычно применяются для размещения конвейерных и автомобильных подъёмников. Крутые траншеи характерны при оставлении на нерабочем борту транспортных берм (съездов).

Временные съезды

Основное отличие временных съездов от скользящих – следующее:

1. Временные съезды не перемещаются (не скользят) при попеременной отработке верхнего и нижнего под уступов в пределов съездов;

2. Строительство временных съездов как правило (в скальных и полу скальных породах) включает обуривание и взрывание породного блока в пределах съезда на высоту уступа и проходку съезда чаще всего с перемещением взорванной породы пол откос экскаватором или бульдозером;

3. Отработка старых съездов осуществляется путём выемки взорванной породы с погрузкой в автомобильный транспорт;

Трасса временных съездов простая или петлевая, коэффициент удлинения простой временной трассы зависит в основном от ширины рабочей площадки. Автомобильные съезды могу примыкать к горизонтам на руководящем уклоне, смягчённом уклоне (с пологой вставкой) и на площадке. Примыкание на руководящем уклоне характерно для съездов на верхних, уже отработанных горизонтах при сквозном движении автомобилей по этим съездам.

Основными элементами открытой разработки карьера, котлована или траншей без крепления откосов является высота Н и ширина l уступа, его форма, крутизна и угол естественного откоса α (рис. 9.3 ). Обрушение уступа происходит чаще всего по линии ВС , расположенной под углом θ к горизонту. Объем ABC называется призмой обрушения. Призма обрушения удерживается в равновесии силами трения, приложенными в плоскости сдвига.

Нарушение устойчивости земляных масс часто сопровождается значительными разрушениями мостов, дорог, каналов, зданий и сооружений, расположенных на оползающих массивах. В результате нарушения прочности (устойчивости природного склона или искусственного откоса) формируются характерные элементы оползня (рис. 9.4 ).

Устойчивость откосов анализируется с помощью теории предельного равновесия или путем рассмотрения призмы обрушения или сползания по потенциальной поверхности скольжения как твердого тела.

Рис. 9.3. Схема откоса грунта: 1 - откос; 2 - линия скольжения; 3 - линия, соответствующая углу внутреннего трения; 4 - возможное очертание откоса при обрушении; 5 - призма обрушения массива грунта

Рис. 9.4. Элементы оползня
1 - поверхность скольжения; 2 - тело оползня; 3 - стенка срыва; 4 - положение склона до оползневого смещения; 5 - коренные породы склона

Устойчивость откоса в основном зависит от его высоты и вида грунта. Для установления некоторых понятий рассмотрим две элементарные задачи:

  • устойчивость откоса идеально сыпучего грунта;
  • устойчивость откоса идеально связного массива грунта.

Устойчивость откоса идеально сыпучего грунта

Рассмотрим в первом случае устойчивость частиц идеально сыпучего грунта , слагающего откос. Для этого составим уравнение равновесия твердой частицы М , которая лежит на поверхности откоса (рис. 9.5,а ). Разложим вес этой частицы F на две составляющие: нормальную N к поверхности откоса АВ и касательную Т к ней. При этом сила Т стремится сдвинуть частицу М к подножию откоса, но ей будет препятствовать противодействующая сила Т" , которая пропорциональна нормальному давлению.

Устойчивость откоса идеально связного массива грунта

Рассмотрим устойчивость откоса АД высотой Н k для связного грунта (рис. 9.5,6 ). Нарушение равновесия при некоторой предельной высоте произойдет по плоской поверхности скольжения ВД , наклоненной под углом θ к горизонту, так как наименьшей площадью такой поверхности между точками В и Д будет обладать плоскость ВД . По всей этой плоскости будут действовать силы удельного сцепления С .


Top