Особенности всасывания и транспорт липидов в организме. Транспорт липидов в организме

Жиры гидрофобны, поэтому существуют специальные механизмы их транспорта в крови. Свободные (неэстерифицированные) жирные кислоты переносятся кровью в виде комплексов с альбуминами. Холестерол, его эфиры, триацилглицеролы, фосфолипиды транспортируются в составе липопротеинов.

Липопротеины являются молекулярными комплексами, состоящими из липидов и белков.

Рис. 10.2. Строение липопротеина

Существует несколько классов липопротеинов (ЛП), но всех их объединяют следующие особенности: 1) поверхностный слой липопротеинов состоит из фосфолипидов, свободного холестерола и белков; 2) каждый липопротеин содержит особый набор поверхностных белков - аполипопротеинов (апо), которые обозначаются буквами латинского алфавита (А,В,С); 3) сердцевина (ядро) липопротеина состоит из гидрофобных триацилглицеролов, эфиров холестерола (рис. 10.2).

Аполипопротеины выполняют следующие функции: 1) являются структурными компонентами липопротеинов; 2) участвуют в узнавании и взаимодействии с рецепторами мембран; 3) активируют ферменты метаболизма липопротеинов.

Липопротеины подразделяются на 4 основные класса в зависимости от плотности (определяемой с помощью ультрацентрифугирования) и электрофоретической подвижности (табл. 10.1).

Таблица 10.1.

Классификация липопротеинов по методу разделения

Основные параметры и состав липопротеинов представлен в табл. 10.2.

Хиломикроны (ХМ) – самые крупные частицы. ХМ синтезируются в слизистой кишечника и участвуют в экзогенном транспорте пищевых липидов к различным тканям . Основным липидом являются триацилглицеролы.

ЛПОНП синтезируются в печени. Основным липидом являются триацилглицеролы . Основная функция – транспорт эндогенных липидов из печени в периферические ткани.

ЛПНП образуются в кровеносном русле из ЛПОНП. Содержат много холестерола (основной транспортер холестерола), который транспортируется в периферические ткани .

ЛПВП образуются в печени, содержат много фосфолипидов и белков; у этих ЛП компоненты оболочки преобладают над сердцевиной.

Таблица 10.2

Состав липопротеинов

ТГ – триацилглицеролы, ФЛ – фосфолипиды. ХС - холестерол

Различают экзогенный (транспорт пищевых липидов) и эндогенный (транспорт липидов, синтезированных в организме) транспорт.

Экзогенный транспорт . Продукты переваривания липидов всасываются в клетки слизистой оболочки кишечника в составе мицелл. Жирные кислоты с числом углеродных атомов <12 всасываются в кровь и по воротной вене транспортируются в печень. Длинноцепочечные жирные кислоты (С >12) в клетках кишечника реэстерифицируются в триацилглицеролы, которые по составу напоминают пищевые жиры. Полученные триацилглицеролы вместе с фосфолипидами, холестеролом и белками (2%) образуют хиломикроны. Хиломикроны содержат апопротеин В48 и апоА.

Рис. 10.3. Экзогенный транспорт липидов (по Марри Р. и др., 2004)

Хиломикроны поступают в лимфу. В крови встречаются с частицами ЛПВП, содержащими апоЕ и апоС. Хиломикроны отдают апоА частицам ЛПВП, а взамен приобретают апоЕ и апоС. Один из аполипопротеинов группы С - апоСII - служит активатором фермента липопротеинлипазы (ЛПЛ). Этот фермент синтезируется и секретируется жировой и мышечной тканями, клетками молочных желез. Секретируемый фермент прикрепляется к плазматической мембране эндотелиальных клеток капилляров тех тканей, где он синтезировался. АпоСII, находящийся на поверхности ХМ, активирует ЛПЛ. Она гидролизирует триацилглицеролы в составе ХМ до глицерола и жирных кислот. Эти жирные кислоты либо поступают в клетки жировой и мышечной ткани, либо соединяются с альбуминами плазмы. В результате действия ЛПЛ хиломикроны резко уменьшаются в размерах и их называют ремнанты (остаток). Ремнанты ХМ рецепторным путем захватываются печенью (рис. 10.3).

Эндогенный транспорт . В клетках печени ресинтезируются триацилглицеролы и фосфолипиды, которые характерны для данного организма. Они включаются в состав ЛПОНП. В состав ЛПОНП входят апоВ100 и апоС. Это основная транспортная форма триацилглицеролов. В другой класс липопротеинов, образуемых в печени - ЛПВП входят холестерол, фосфолипиды, апоА. Эти частицы плоские и их называют - насцентные ЛПВП. (В их ядре нет гидрофобных молекул). Эти ЛПВП играют большую роль в обратном транспорте холестерола из клеток периферических тканей в печень.

В капиллярах жировой и мышечной тканей апоСII ЛПОНП активирует ЛПЛ, которая катализирует гидролиз триацилглицеролов ЛПОНП и превращает их в ЛППП (липопротеины промежуточной плотности). ЛППП под действием синтезированной в печени циркулирующей печеночной триацилглицероллипазы, теряют еще часть триацилглицеролов и превращаются в ЛПНП. Основным липидом ЛПНП становится холестерол, который в составе ЛПНП переносится к клеткам всех тканей. Следовательно, ЛПНП образуются непосредственно в сосудистом русле (рис. 10.4).

Рис. 10.4. Эндогенный транспорт липидов (по Марри Р. и др., 2004)

Итак, в результате экзогенного и эндогенного транспорта в капиллярах жировой и мышечной тканей освобождаются жирные кислоты и глицерол. Жирные кислоты связываются с альбуминами и транспортируются к тканям-потребителям.

Образование липопротеидов (ЛП) в организме является необходимостью вследствие гидрофобности (нерастворимости) липидов. Последние облачаются в белковую оболочку, образованную специальными транспортными белками – апопротеидами, обеспечивающими растворимость липопротеидов. Кроме хиломикронов (ХМ) в организме животных и человека формируются липопротеиды очень низкой плотности (ЛПОНП), липопротеиды промежуточной плотности (ЛППП), липопротеиды низкой плотности (ЛПНП) и липопротеиды высокой плотности (ЛПВП). Тонкое разделение на классы достигается при ультрацентрифугировании в градиенте плотности и зависит от соотношения количества белков и липидов в частицах, т.к. липопротеиды – это надмолекулярные образования, основанные на нековалентных связях. При этом ХМ располагаются на поверхности сыворотки крови в связи с тем, что содержат до 85% жира, а он легче воды, в низу центрифужной пробирки находятся ЛПВП, содержащие наибольшее количество белков.

Другая классификация ЛП основана на электорофоретической подвижности. При электрофорезе в полиакриламидном геле ХМ как самые крупные частицы остаются на старте, ЛПОНП формируют пре-β – ЛП фракцию, ЛППП и ХПНП – β – ЛП фракцию, ЛПВП – α – ЛП фракцию.

Все ЛП построены из гидрофобного ядра (жиры, эфиры холестерина) и гидрофильной оболочки, представленной белками, а также фосфолипидами и холестерином. Их гидрофильные группы обращены к водной фазе, а гидрофобные части – к центру, к ядру. Каждый из видов ЛП образуется в разных тканях и транспортирует определенные липиды. Так, ХМ транспортируют жиры, полученные с пищей из кишечника, в ткани. ХМ на 84-96% состоят из экзогенных триацилглицеридов. В ответ на жировую нагрузку эндотелиоциты капилляров освобождает в кровь фермент липопротеидлипазу (ЛПЛ), которая гидролизует молекулы жира ХМ до глицерина и жирных кислот. Жирные кислоты поступают в различные ткани, а растворимый глицерин транспортируется в печень, где может быть использован для синтеза жиров. Наиболее активна ЛПЛ в капиллярах жировой ткани, сердца и легких, что связанно с активным отложением жира в адипоцитах и особенностью обмена веществ в миокарде, использующем для энергетических целей много жирных кислот. В легких жирные кислоты используются для синтеза сурфактанта и обеспечения активности макрофагов. Не случайно в народной медицине при легочных патологиях применяют барсучий и медвежий жир, а северные народы, живущие в суровых климатических условиях, редко болеют бронхитом и пневмонией, потребляя жирную пищу.

С другой стороны, высокая активность ЛПЛ в капиллярах жировой ткани способствует ожирению. Имеются также данные,что при голодании она уменьшается, но увеличивается активность мышечной ЛПЛ.

Остаточные частицы ХМ захватываются путем эндоцитоза гепатоцитами, где расщепляются ферментами лизосом до аминокислот, жирных кислот, глицерина, холестерина. Одна часть холестерина и других липидов непосредственно экскретируется в желчь, другая превращается в желчные кислоты, а третья включается в ЛПОНП. Последние содержат 50-60% эндогенных триацилглицеридов, поэтому после секреции их в кровь они подвергаются, как и ХМ, действию липопротеидлипазы. В результате ЛОНП теряют ТАГ, которые используются затем клетками жировой и мышечной тканей. В ходе катаболизма ЛПОНП относительный процент холестерина и его эфиров (ЭФ) возрастает (особенно при потреблении пищи, богатой холестерином), и ЛПОНП переходят в ЛППП, которые у многих млекопитающих, особенно у грызунов, захватываются печенью и полностью расщепляются в гепатоцитах. У человека, приматов, птиц, свиней большая, не захваченная гепатоцитами, часть ЛППП в крови превращается в ЛПНП. Эта фракция наиболее богата холестерином и ХМ, а так как высокий уровень холестерина является одним из первых факторов риска развития атеросклероза, то ЛПНП называют самой атерогенной фракцией ЛП. Холестерин ЛПНП используется клетками надпочечников и половыми железами для синтеза стероидных гормонов. ЛПНП поставляют холестерин гепатоцитам, почечному эпителию, лимфоцитам, клеткам сосудистой стенки. В связи с тем,что клетки способны сами синтезировать холестерин из ацетилкоэнзима А (АкоА), существуют физиологические механизмы, предохраняющие ткань от избытка ХМ: ингибирование продукции собственного внутреннего холестерина и рецепторов к апопротеинам ЛП, так как любой эндоцитоз рецепторно опосредован. Главным стабилизатором клеточного холестерина признана дренажная система ЛПВП.

Предшественники ЛПВП образуются в печени и кишечнике. Они содержат высокий процент белков и фосфолипидов, имеют очень мелкие размеры, свободно приникают через сосудистую стенку, связывая избыток ХМ и выводя его из тканей, а сами становятся зрелыми ЛПВП. Часть ЭХ переходит прямо в плазме с ЛПВП на ЛПОНП и ЛППП. В конце концов все ЛП расщепляются лизосомами гепатоцитов. Таким образом, почти весь «лишний» холестерин поступает в печень и выводится из нее в составе желчи в кишечник, удаляясь с фекалиями.

Транспорт липидов в организме идет двумя путями:

  • 1) жирные кислоты транспортируются в крови с помощью альбуминов;
  • 2) ТГ, ФЛ, ХС, ЭХС и д.р. липиды транспортируются в крови в составе липопротеинов.

Обмен липопротеинов

Липопротеины (ЛП) - это надмолекулярные комплексы сферической формы, состоящие из липидов, белков и углеводов. ЛП имеют гидрофильную оболочку и гидрофобное ядро. В гидрофильную оболочку входят белки и амфифильные липиды - ФЛ, ХС. В гидрофобное ядро входят гидрофобные липиды - ТГ, эфиры ХС и т.д. ЛП хорошо растворимы в воде.

В организме синтезируются несколько видов ЛП, они отличаются химическим составом, образуются в разных местах и осуществляют транспорт липидов в различных направлениях.

ЛП разделяют с помощью:

  • 1) электрофореза, по заряду и размеру, на б-ЛП, в-ЛП, пре-в-ЛП и ХМ;
  • 2) центрифугирования, по плотности, на ЛПВП, ЛПНП, ЛППП, ЛПОНП и ХМ.

Соотношение и количество ЛП в крови зависит от времени суток и от питания. В постабсорбтивный период и при голодании в крови присутствуют только ЛПНП и ЛПВП.

Основные виды липопротеинов

Состав, % ХМ ЛПОНП

  • (пре-в-ЛП) ЛППП
  • (пре-в-ЛП) ЛПНП
  • (в-ЛП) ЛПВП
  • (б-ЛП)

Белки 2 10 11 22 50

ФЛ 3 18 23 21 27

ЭХС 3 10 30 42 16

ТГ 85 55 26 7 3

Плотность, г/мл 0,92-0,98 0,96-1,00 0,96-1,00 1,00-1,06 1,06-1,21

Диаметр, нм >120 30-100 30-100 21-100 7-15

Функции Транспорт к тканям экзогенных липидов пищи Транспорт к тканям эндогенных липидов печени Транспорт к тканям эндогенных липидов печени Транспорт ХС

в ткани Удаление избытка ХС

из тканей

апо А, С, Е

Место образования энтероцит гепатоцит в крови из ЛПОНП в крови из ЛППП гепатоцит

Апо В-48, С-II, Е В-100, С-II, Е В-100, Е В-100 А-I С-II, Е, D

Норма в крови < 2,2 ммоль/л 0,9- 1,9 ммоль/л

Апобелки

Белки, входящие в состав ЛП, называются апопротеины (апобелки, апо). К наиболее распространенным апопротеинам относят: апо А-I, А-II, В-48, В-100, С-I, С-II, С-III, D, Е. Апобелки могут быть периферическими (гидрофильные: А-II, С-II, Е) и интегральными (имеют гидрофобный участок: В-48, В-100). Периферические апо переходят между ЛП, а интегральные - нет. Апопротеины выполняют несколько функций:

Апобелок Функция Место образования Локализация

А-I Активатор ЛХАТ, образование ЭХС печень ЛПВП

А-II Активатор ЛХАТ, образование ЭХС ЛПВП, ХМ

В-48 Структурная (синтез ЛП), рецепторная (фагоцитоз ЛП) энтероцит ХМ

В-100 Структурная (синтез ЛП), рецепторная (фагоцитоз ЛП) печень ЛПОНП, ЛППП, ЛПНП

С-I Активатор ЛХАТ, образование ЭХС Печень ЛПВП, ЛПОНП

С-II Активатор ЛПЛ, стимулирует гидролиз ТГ в ЛП Печень ЛПВП > ХМ, ЛПОНП

С-III Ингибитор ЛПЛ, ингибирует гидролиз ТГ в ЛП Печень ЛПВП > ХМ, ЛПОНП

D Перенос эфиров холестерина (БПЭХ) Печень ЛПВП

Е Рецепторная, фагоцитоз ЛП печень ЛПВП > ХМ, ЛПОНП, ЛППП

Ферменты транспорта липидов

Липопротеинлипаза (ЛПЛ) (КФ 3.1.1.34, ген LPL, около 40 дефектных аллелей) связана с гепарансульфатом, находящимся на поверхности эндотелиальных клеток капилляров кровеносных сосудов. Она гидролизует ТГ в составе ЛП до глицерина и 3 жирных кислот. При потере ТГ, ХМ превращаются в остаточные ХМ, а ЛПОНП повышают свою плотность до ЛППП и ЛПНП.

Апо С-II ЛП активирует ЛПЛ, а фосфолипиды ЛП участвуют в связывании ЛПЛ с поверхностью ЛП. Синтез ЛПЛ индуцируется инсулином. Апо С-III ингибирует ЛПЛ.

ЛПЛ синтезируется в клетках многих тканей: жировой, мышечной, в легких, селезёнке, клетках лактирующей молочной железы. Ее нет в печени. Изоферменты ЛПЛ разных тканей отличаются по значением Кm. В жировой ткани ЛПЛ имеет Кm в 10 раз больше, чем в миокарде, поэтому в жировая ткань поглощает жирные кислоты только при избытке ТГ в крови, а миокард - постоянно, даже при низкой концентрации ТГ в крови. Жирные кислоты в адипоцитах используются для синтеза ТГ, в миокарде как источник энергии.

Печёночная липаза находиться на поверхности гепатоцитов, она не действует на зрелые ХМ, а гидролизует ТГ в ЛППП.

Лецитин: холестерол-ацил-трансфераза (ЛХАТ) находиться в ЛПВП, она переносит ацил с лецитина на ХС с образование ЭХС и лизолецитина. Ее активируют апо А-I, А-II и С-I.

лецитин + ХС > лизолецитин + ЭХС

ЭХС погружается в ядро ЛПВП или переноситься с участием апо D на другие ЛП.

Рецепторы транспорта липидов

Рецептор ЛПНП -- сложный белок, состоящий из 5 доменов и содержащий углеводную часть. Рецептор ЛПНП взаимодействует с белками ano B-100 и апо Е, хорошо связывает ЛПНП, хуже ЛППП, ЛПОНП, остаточные ХМ, содержащие эти апо. Клетки тканей содержат большое количество рецепторов ЛПНП на своей поверхности. Например, на одной клетке фибробласта имеется от 20 000 до 50 000 рецепторов.

Если количество холестерола, поступающего в клетку, превышает её потребность, то синтез рецепторов ЛПНП подавляется, что уменьшает поток холестерола из крови в клетки. При снижении концентрации свободного холестерола в клетке, наоборот, активируется синтез ГМГ-КоА-редуктазы и рецепторов ЛПНП. Стимулируют синтез рецепторов ЛПНП гормоны: инсулин и трийодтиронин (Т3), половые гормоны, а глюкокортикоиды - уменьшают.

Белок, сходным с рецептором ЛПНП на поверхности клеток многих органов (печени, мозга, плаценты) имеется другой тип рецептора, называемый «белком, сходным с рецептором ЛПНП». Этот рецептор взаимодействует с апо Е и захватывает ремнантные (остаточные) ХМ и ЛППП. Так как ремнантные частицы содержат ХС, этот тип рецепторов также обеспечивает поступление его в ткани.

Кроме поступления ХС в ткани путём эндоцитоза ЛП, некоторое количество ХС поступает в клетки путём диффузии из ЛПНП и других ЛП при их контакте с мембранами клеток.

В крови в норме концентрация:

  • * ЛПНП
  • * общих липидов 4-8г/л,
  • * ТГ 0,5-2,1 ммоль/л,
  • * Свободных жирных кислот 400-800 мкмоль/л

Липиды являются нерастворимыми в воде соединениями, поэтому для их переноса кровью необходимы специальные переносчики, растворимые в воде. Такими транспортными формами являются липопротеины плазмы крови, которые относятся к свободным липопротеинам (ЛП). Ресинтезированный жир в клетках кишечника, либо синтезированный жир в клетках других органов и тканей может быть транспортирован кровью только после включения в ЛП, где роль стабилизатора играют белки.

Мицеллы ЛП имеют наружный слой и ядро. Наружный слой состоит из белка, ФЛ и свободного ХС, которые имеют гидрофильные полярные группы и проявляют сродство к воде. Ядро формируется из ТГ и эфиров ХС. Все эти соединения, входящие в состав ядра, не обладают гидрофильными группами.

ЛП транспортируют: ФЛ, ТГ, холестерин. Могут транспортировать некоторые жирорастворимые витамины (А,D,Е,К). Выделяют 4 класса транспортных ЛП, которые отличаются друг от друга по химическому составу, размером мицелл и транспортируемым липидам. Поскольку они имеют разную плотность и скорость оседания в растворе NaCl, их разделяют на следующие группы:

ХМ – хиломикроны. Они образуются в стенке тонкого отдела кишечника;

ЛПОНП – липопротеины очень низкой плотности - образуются в стенке кишечника и печени;

ЛПНП – липопротеины низкой плотности - образуются в стенке кишечника, печени и эндотелии капилляров из ЛПОНП под действием липопротеидлипазы;

ЛПВП – липопротеины высокой плотности – образуются в стенке тонкой кишки и печени.

Таким образом, ЛП крови образуются и секретируются 2-мя видами клеток – энтероцитами и гепатоцитами. При электрофорезе белков сыворотки крови ЛП движутся в зоне a- и b-глобулинов, поэтому их по элекрофоретической подвижности могут обозначить как:

ЛПОНП – пре-b-ЛП

ЛПНП – b-ЛП

ЛПВП – a-ЛП

ХМ – как самые большие по размеру частиц и самые тяжёлые при электрофорезе не движутся и остаются на старте.

Принято считать, что ХМ отсутствуют в крови натощак, а синтезируются они в стенке тонкого кишечника особенно активно после приема жирной пищи. Они транспортируют в основном ТГ от клеток кишечника и жировых депо к клеткам органов и тканей. Имеют большие размеры мицелл и поэтому не проникают в стенки сосудов. Завершается распад ХМ через 10-12 часов после приема пищи под влиянием липопротеидлипазы печени, жировой ткани, эндотелия капилляров. Продукты гидролиза вовлекаются в клеточный метаболизм.

ЛПОНП и ЛПНП транспортируют преимущественно холестерин. Эти фракции приносят его в клетки органов и тканей, которые используют ХС для построения биомембран, для образования стероидных гормонов и витаминов группы D. Их ещё называют атерогенными фракциями (пре-b и b).

ЛПВП – осуществляют транспорт холестерина из клеток и тканей в печень, где он окисляется, превращаясь в желчные кислоты. Это антиатерогенная фракция.

ЛПОНП, ЛПНП и ЛПВП путём эндоцитоза поглощаются клетками печени, кишечника, почек, надпочечников, жировой ткани и разрушаются в лизосомах или микросомах.

Ресинтезированный жир в стенке кишечника соединяется с небольшим количеством белка и образует стабильные комплексные частицы, которые называются ХМ. Поскольку размеры частиц большие, то они не могут проникать из эндотелия клеток кишечника в кровяные капилляры. Они диффундируют в лимфотическую систему кишечника, а из неё в грудной проток и в кровеносное русло. Уже после приёма пищи через 1,5-2 часа начинают расти концевые ХМ, которые достигают максимума к 4-6 часу после приёма жирной пищи.

Активное поступление ХМ в печень, жировую ткань, где под влиянием ферментов липопртеидлипаз (регулируются гепарином) они распадаются с образованием глицерина и ВЖК. Часть ВЖК используется клетками, а часть с помощью транспортных белков крови. Завершается распад ХМ через 10-12 часов после приёма пищи.

Индекс атерогенности – соотношение ХС в ЛПОНП, ЛПНП и ЛПВП.

К атер = (ХСлпнп + ХСлпонп) / ХСлпвп. В норме индекс атерогенности 2-3, если же он выше 4, то очень велика вероятность развития атеросклероза.

Липиды транспортируются в водной фазе крови в составе особых частиц – липопротеинов . Поверхность частиц гидрофильна и сформирована белками, фосфолипидами и свободным холестеролом. Триацилглицеролы и эфиры холестерола составляют гидрофобное ядро.

Белки в липопротеинах обычно называются апобелками , выделяют несколько их типов – А, В, С, D, Е. В каждом классе липопротеинов находятся соответствующие ему апо-

белки, выполняющие структурную , ферментативную и кофакторную функции.

Липопротеины различаются по соотношению триацилглицеролов, холестерола и его эфиров, фосфолипидов и как сложные белки состоят из четырех классов.

o липопротеины высокой плотности (ЛПВП, α-липопротеины, α-ЛП).

Хиломикроны и ЛПОНП ответственны, в первую очередь, за транспорт жирных кислот в составе ТАГ. Липопротеины высокой и низкой плотности – за транспорт холестерола и жирных кислот в составе эфиров ХС.

ТРАНСПОРТ ТРИАЦИЛГЛИЦЕРОЛОВ В КРОВИ

Транспорт ТАГ от кишечника к тканям (экзогенные ТАГ) осуществляется в виде хиломикронов, от печени к тканям (эндогенные ТАГ) – в виде липопротеинов очень низкой плотности.

В транспорте ТАГ к тканям можно выделить последовательность следующих событий:

1. Образование незрелых первичных ХМ в кишечнике .

2. Движение первичных ХМ через лимфатические протоки в кровь .

3. Созревание ХМ в плазме крови – получение белков апоС-II и апоЕ от ЛПВП.

4. Взаимодействие с липопротеинлипазой эндотелия и потеря бо льшей части ТАГ. Образо-

вание остаточных ХМ.

5. Переход остаточных ХМ в гепатоциты и полный распад их структуры.

6. Синтез ТАГ в печени из пищевой глюкозы . Использование ТАГ, пришедших в составе остаточных ХМ.

7. Образование первичных ЛПОНП в печени .

8. Созревание ЛПОНП в плазме крови – получение белков апоС-II и апоЕ от ЛПВП.

9. Взаимодействие с липопротеинлипазой эндотелия и потеря бо льшей части ТАГ. Образование остаточных ЛПОНП (по-другому липопротеины промежуточной плотности, ЛППП).

10. Остаточные ЛПОНП переходят в гепатоциты и полностью распадаются, либо остаются

в плазме крови. После воздействия на них печеночной ТАГ-липазы в синусоидах печени ЛПОНП превращаются в ЛПНП .


Top