Разложение функции в ряд тейлора онлайн. Ряд Тейлора

В теории функциональных рядов центральное место занимает раздел, посвященный разложению функции в ряд.

Таким образом, ставится задача: по заданной функции требуется найти такой степенной ряд

который на некотором интервале сходился и его сумма была равна
, т.е.

= ..

Эта задача называется задачей разложения функции в степенной ряд.

Необходимым условием разложимости функции в степенной ряд является её дифференцируемость бесконечное число раз – это следует из свойств сходящихся степенных рядов. Такое условие выполняется, как правило, для элементарных функций в их области определения.

Итак, предположим, что функция
имеет производные любого порядка. Можно ли её разложить в степенной ряд, если можно, то как найти этот ряд? Проще решается вторая часть задачи, с неё и начнем.

Допустим, что функцию
можно представить в виде суммы степенного ряда, сходящегося в интервале, содержащем точкух 0 :

= .. (*)

где а 0 1 2 ,...,а п ,... – неопределенные (пока) коэффициенты.

Положим в равенстве (*) значение х = х 0 , тогда получим

.

Продифференцируем степенной ряд (*) почленно

= ..

и полагая здесь х = х 0 , получим

.

При следующем дифференцировании получим ряд

= ..

полагая х = х 0 , получим
, откуда
.

После п -кратного дифференцирования получим

Полагая в последнем равенстве х = х 0 , получим
, откуда

Итак, коэффициенты найдены

,
,
, …,
,….,

подставляя которые в ряд (*), получим

Полученный ряд называется рядом Тейлора для функции
.

Таким образом, мы установили, что если функцию можно разложить в степенной ряд по степеням (х - х 0 ), то это разложение единственно и полученный ряд обязательно является рядом Тейлора.

Заметим, что ряд Тейлора можно получить для любой функции, имеющей производные любого порядка в точке х = х 0 . Но это еще не означает, что между функцией и полученным рядом можно поставить знак равенства, т.е. что сумма ряда равна исходной функции. Во-первых, такое равенство может иметь смысл только в области сходимости, а полученный для функции ряд Тейлора может и расходиться, во-вторых, если ряд Тейлора будет сходиться, то его сумма может не совпадать с исходной функцией.

3.2. Достаточные условия разложимости функции в ряд Тейлора

Сформулируем утверждение, с помощью которого будет решена поставленная задача.

Если функция
в некоторой окрестности точки х 0 имеет производные до (n + 1)-го порядка включительно, то в этой окрестности имеет место формула Тейлора

где R n (х )-остаточный член формулы Тейлора – имеет вид (форма Лагранжа)

где точка ξ лежит между х и х 0 .

Отметим, что между рядом Тейлора и формулой Тейлора имеется различие: формула Тейлора представляет собой конечную сумму, т.е. п - фиксированное число.

Напомним, что сумма ряда S (x ) может быть определена как предел функциональной последовательности частичных сумм S п (x ) на некотором промежутке Х :

.

Согласно этому, разложить функцию в ряд Тейлора означает найти такой ряд, что для любого х X

Запишем формулу Тейлора в виде, где

Заметим, что
определяет ту ошибку, которую мы получаем, заменяй функцию f (x ) многочленом S n (x ).

Если
, то
,т.е. функция разлагается в ряд Тейлора. Инаоборот, если
, то
.

Тем самыммы доказали критерий разложимости функции в ряд Тейлора.

Для того, чтобы в некотором промежутке функция f (х) разлагалась в ряд Тейлора, необходимо и достаточно, чтобы на этом промежутке
, где R n (x ) - остаточный член ряда Тейлора.

С помощью сформулированного критерия можно получить достаточные условия разложимости функции в ряд Тейлора.

Если в некоторой окрестности точки х 0 абсолютные величины всех производных функции ограничены одним и тем же числом М 0, т.е.

, т о в этой окрестности функция разлагается в ряд Тейлора.

Из вышеизложенного следует алгоритм разложения функции f (x ) в ряд Тейлора в окрестности точки х 0 :

1. Находим производные функции f (x ):

f(x), f’(x), f”(x), f’”(x), f (n) (x),…

2. Вычисляем значение функции и значения её производных в точке х 0

f(x 0 ), f’(x 0 ), f”(x 0 ), f’”(x 0 ), f (n) (x 0 ),…

3. Формально записываем ряд Тейлора и находим область сходимости полученного степенного ряда.

4. Проверяем выполнение достаточных условий, т.е. устанавливаем, для каких х из области сходимости, остаточный член R n (x ) стремится к нулю при
или
.

Разложение функций в ряд Тейлора по данному алгоритму называют разложением функции в ряд Тейлора по определению или непосредственным разложением.

Если функция f(x) имеет на некотором интервале, содержащем точку а , производные всех порядков, то к ней может быть применена формула Тейлора:

где r n – так называемый остаточный член или остаток ряда, его можно оценить с помощью формулы Лагранжа:

, где число x заключено между х и а .

Если для некоторого значения х r n ®0 при n ®¥, то в пределе формула Тейлора превращается для этого значения в сходящийся ряд Тейлора :

Таким образом, функция f(x) может быть разложена в ряд Тейлора в рассматриваемой точке х , если:

1) она имеет производные всех порядков;

2) построенный ряд сходится в этой точке.

При а =0 получаем ряд, называемый рядом Маклорена :

Пример 1 f(x)= 2 x .

Решение . Найдем значения функции и ее производных при х =0

f(x) = 2 x , f(0) = 2 0 =1;

f¢(x) = 2 x ln2, f¢(0) = 2 0 ln2= ln2;

f¢¢(x) = 2 x ln 2 2, f¢¢(0) = 2 0 ln 2 2= ln 2 2;

f (n) (x) = 2 x ln n 2, f (n) (0) = 2 0 ln n 2= ln n 2.

Подставляя полученные значения производных в формулу ряда Тейлора, получим:

Радиус сходимости этого ряда равен бесконечности, поэтому данное разложение справедливо для -¥


Top