Вторичная структура коллагена. Исследование фибриллогенеза коллагена типа I in vitro Николаева Тамара Ивановна

Важными компонентами соединительной ткани являются коллаген, фибробласты, эластин и гиалуроновая кислота. Количество этих веществ в ней прямо пропорционально молодости нашей кожи. Коллаген – это белок, составляющий основу соединительной ткани, обеспечивающий ее прочность и упругость. Эластин – другой тип белка, отвечающий за эластичность тканей, позволяющий им восстанавливаться. Фибробласты – синтезируют межклеточный матрикс. А гиалуроновая кислота – желеобразное вещество, заполняющее пространство между ними. Можно сказать, что это три кита, на которых стоит молодость и красота нашей кожи.

Что такое коллаген

С химической точки зрения, коллаген – это фибриллярный белок, имеющий правозакрученную спиральную структуру из трех аминокислотных цепей. Аминокислотные цепи сплетены между собой в виде жгута и по силе прочнее стали. А все потому, что в состав молекулы коллагена входит структурный белок тропоколлаген, который придает ей небывалую эластичность и прочность.

Благодаря своей спиральной форме коллаген позволяет соединительной ткани оставаться в хорошем состоянии. А из нее организованы наружные покровы всех органов.

Коллаген – это фибриллярный белок из трех аминокислотных цепей

Коллаген входит в состав сосудов кровеносной системы, в костную, хрящевую и зубную ткань, в состав сухожилий и связок. Можно сказать, что мы буквально пропитаны коллагеном. Но особенно много его в коже: 70 % общего количества всех белков находится в ней.

Коллаген в организме выполняет определенные функции:

  • протекционную;
  • поддерживающую;
  • регенерирующую;
  • вместе с эластином способствует эластичности и прочности ткани.

Благодаря своим уникальным свойствам коллаген «склеивает» все клеточные комплексы. Если бы не он, то наш организм буквально бы рассыпался на атомы. Коллаген выполняет функцию некого уникального пластилина.

Типы коллагена

Коллаген бывает разных типов. Он имеет разную структуру и происхождение. На сегодняшний день известно 19 его типов, которые различаются друг от друга по структуре пептидных цепей, ролью и местонахождением в организме.

Типов коллагена, образующих тройную спираль, значительно больше около 30. Отличаются они друг от друга степенью модификации и аминокислотной последовательностью. Мы рассмотрим основные его виды:

  • коллаген, образующий длинные фибриллы: к нему относятся коллаген типа I, III, V и XI типов. Большая часть коллагена в организме составляют тип I и III, которые представляют собой очень прочные фибриллы. Фибриллы – это нитевидные белковые структуры, которые находятся в клетках и тканях человека. Это почти 90% всего коллагена в коже.
  • коллаген, образующий сети: к нему относится коллаген IV типа. Он образует сеть базальных мембран. Базальная мембрана – это бесклеточный слой кожи, разделяющий эпителий от эндотелия. Она включает в себя два пласта: светлый и темный. Если коллаген IV типа имеет здоровую структуру, то и базальная мембрана находится в хорошем состоянии и крепко держит эти два слоя. То есть кожа при этом выглядит упругой, свежей и эластичной.
  • коллаген, образующий «заякоренные» фибриллы: к нему относится коллаген VII типа. Этот тип коллагена представляет собой якорьки-зажимы, которые захватывают и крепко держат коллагеновые фибриллы. Это гармоничный процесс представляет собой хорошо налаженное функционирование всех типов коллагена. Благодаря этому процессу коллаген синтезируется своевременно и в результате кожа выглядит молодой и свежей.
  • коллаген, связанный с фибриллами. Этот тип коллагена соединяет фибриллы друг с другом и с другими составными частями внеклеточного матрикса. К нему относится коллаген IX, XII, XIV и XVI типов.

Несмотря на то, что коллаген употребляется в косметологии достаточно давно, он по сей день вызывает массу споров и околонаучных дебатов. Совершенно точно можно сказать, что спекуляции вокруг коллагена вполне хватает. Чем же вызвал к себе такой интерес невинный белок? А тем, что в последнее время на косметическом рынке появился коллаген «растительного и растительно-морского происхождения».


Коллаген содержится в омолаживающих косметических средствах

Внимание! Коллаген – это белок животного происхождения. Ни коллагена «растительного происхождения из пшеничных протеинов» или, что еще абсурдней, коллагена «растительно-морского происхождения» в природе не бывает и быть не может.

Существует коллаген морских рыб (китов, акул), но никак не «растительно-морской».

Все это не более чем маркетинговый ход. Предыстория этого явления связана с участившимися случаями заболеваний крупного рогатого скота вирусом коровьего бешенства (прионное заболевание). А так как источником коллагена в косметологии служит именно крупный рогатый скот, то потребители стали опасаться косметической продукции на его основе.

Некоторые косметические фирмы стали предлагать потребителям в качестве альтернативы аналог животного коллагена – «растительный коллаген». Часто такие предложения сопровождаются околонаучными комментариями о бесспорных преимуществах «коллагена растительно-морского происхождения».

Понятно, что вводя в заблуждение потребителя, производители «растительного коллагена» лоббируют свою продукцию. В препаратах на основе растительного белка, быть может, имеются коллагеноподобные структуры, но это далеко не нативный коллаген, и насколько эффективны такие препарат определить трудно.

К тому же использование больных животных на предприятиях по переработке кожевенного сырья, совершенно исключено благодаря тщательному многократному ветеринарно-санитарному контролю. В соответствии с принятыми международными стандартами шкуры животных подвергаются тщательной санитарной обработке.

Очистка коллагена очень долгий и трудоемкий химический процесс. Он занимает длительное время и имеет несколько ступеней.

Как действует коллаген в косметическом средстве

Коллаген в креме способен оказывать несколько важных функций. Во-первых, он обладает значительным увлажняющим действием. Во-вторых, коллаген демонстрирует широкие заживляющие возможности. В- третьих, он является ведущим структурообразующим ингредиентом косметического средства, выполняя роль некой матрицы, где остальные компоненты усиливают свое действие.

Натуральный коллаген в составе кремов, эмульсий и сывороток, соприкасаясь с кожей под действием температуры тела, вступает в химическую реакцию, образуя низкомолекулярные и водорастворимые соединения. Эти соединения с помощью эхансеров (проводников), присутствующих в косметическом средстве, способны миновать роговой слой и подключаться к обменным реакциям, стимулирующим регенеративные процессы в коже.

Стоит уточнить, что когда мы говорим о коллагене в косметическом средстве, речь идет только о гидролизате коллагена. Гидролизат – это продукт, полученный в процессе гидролиза. Гидролиз –это расщепление сложного вещества с помощью воды. Такие методы переработки сырья применяют для его лучшего усвоения организмом. Например, коллаген расщепляется на легкодоступные для усвоения белки, аминокислоты и пептиды.

Сырье, используемое в косметологии, получают из природных источников: шкур крупного рогатого скота. Такой коллаген подвергается многофазовой отчистке от нежелательных примесей, но его молекулярная масса является достаточно «тяжелой» для проникновения в дерму. По этой причине коллаген подвергают гидролизу.

Выбирая крем, тщательно исследуйте ингредиенты, входящие в его состав. Помните, что коллаген и эластин должны находиться в форме гидролизата, в такой форме они проникают через роговой слой и демонстрируют свои регенерирующие свойства. Но это никоим образом не относится к гиалуроновой кислоте. Коллаген и эластин – белки, их можно подвергать гидролизу, а гиалуроновая кислота – это химическое соединение. Поэтому, увидев на упаковке словосочетание «гидролизат гиалуроновой кислоты», можете смело отбросить крем в сторону.

Почему мы теряем коллаген?

С годами распад коллагена в организме преобладает над его синтезом. Причем этот процесс начинается в достаточно молодом возрасте. Точно так же обстоят дела и с гиалуроновой кислотой и эластином. Это закономерный биологический процесс.


Кожа стареет при потере коллагена

Процесс распада коллагена способствует ухудшению кожный характеристик. Кожа теряет упругость и эластичность, становится дряблой и сухой, на ней появляются глубокие морщины. Что же способствует распаду коллагена?

Причина № 1. Ультрафиолетовое облучение

Под пагубным воздействием ультрафиолета происходит не только снижение синтеза коллагена, но и изменение его структуры. Длительное облучение ультрафиолетом типа А способствует образованию в коже свободных радикалов. Свободные радикалы – это молекулы-гуляки, которые гуляют сами по себе, вступают в хаотичные «связи» с организованными молекулами, внося таким образом сумятицу в гармоничную работу клеток.

Новая молекула тоже становится свободно-радикальной и пытается найти уже для себя новую «жертву». Например, ультрафиолет, проникающий глубоко в кожу, может трансформировать молекулы коллагена в свободные радикалы. Молекулы коллагена, ставшие свободными радикалами, связываются с другими молекулами, образуют поврежденный, неупругий коллаген. Морфоструктура такого коллагена нарушена, он становится дефектным, в результате чего кожа стареет раньше положенного срока. Этот процесс подобен «принципу домино». Если он запускается, то остановить его совсем не просто.

Причина № 2. Коллаген разрушает фермент коллагеназа

Как и любой белок, коллаген распадается через определенное время. В организме происходит регулярное восстановление и замена старого поврежденного коллагена на новый коллаген. Но с годами молодого коллагена становится все меньше, а старого – все больше, чем должно быть. В молодом организме существует строгое равновесие между этой пропорцией: новый – старый коллаген. В процессе взросления кожи это равновесие нарушается, но, как становится понятным, возраст не единственная причина, по которой ухудшает синтез коллагена.

В нашем организме присутствует фермент коллагеназа, который расщепляет пептидные связи на некоторых участках спирализированного коллагена. Этот процесс распада и синтеза коллагена можно сравнить со сменой времен года, только, по мере повторения этого процесса, синтезируется молодого коллагена в организме все меньше и меньше. А все потому, что в молодости процесс обмена коллагена протекает с определенной интенсивностью, а с возрастом (особенно в старости) процесс заметно снижается, так как у пожилых людей растет количество поперечных сшивок между молекулами коллагена.

Можно даже сказать, что синтез коллагена не столько снижается, сколько меняется его структура и качество. В результате кожа истончается, становиться дряблой, теряет эластичность, покрывается морщинами. Современные регенеративные технологии, такие как: плазмолифтинг, плацентотерапия, SPRS-терапия – способны «разбудить» фибробласты и побудить их к синтезу коллагена.

Причина № 3. Курение способствует разрушению коллагена

Это банальная фраза, которая давно у всех на слуху, является неопровержимой истиной. Недавние исследования японских ученых показали, что курение стимулирует выработку молекул под названием матриксная металлопротеиназа (ММР), которые способствует деградации коллагена в организме, а наружное воздействие сигаретного дыма на кожу, способствует его удвоенной выработке. После каждой выкуренной сигареты синтез коллагена в организме уменьшается примерно на 40%.

Причины № 4. Недостаток витамина С

Известно, что витамин С, наряду с витаминами А, Е и селеном, является мощным антиоксидантным комплексом. Антиоксиданты – вещества, которые противостоят окислению клеток и препятствуют образованию свободных радикалов. Как было сказано выше, ультрафиолетовое излучение повреждает молекулы коллагена, превращая их в свободные радикалы. Недостаток витамина С может ускорить и усугубить этот процесс.

Нехватка витамина С в организме уменьшают синтез коллагена и его структуру. Вместо «нормального» коллагена вырабатывается неупругий, дефектный коллаген с пониженной механической прочностью. Например, при нехватке в организме витамина С развивается опасное заболевание – цинга. При этом происходит повреждение коллагеновых волокон.

Как восстановить коллаген в коже

На сегодняшний день восстановить коллаген в коже можно двумя путями:

  • восполнить его дефицит с помощью косметических средств;
  • повысить стимулирование собственного коллагена.

Скажем честно, что с помощью косметических кремов, эмульсий и сывороток не происходит восстановление коллагена в коже. Мы уже писали, что коллаген имеет высокую молекулярную массу. Для того чтобы он проник сквозь роговой слой кожи, следует использовать гидролизат коллагена. Но даже в этом случае он проникает не дальше верхнего слоя эпидермиса (эпидермис состоит из пяти слоев). Максимум на что способен коллаген в креме: увлажнять и питает верхний слой эпидермиса. И надо отметить, делает он это отменно.


В инъекциях используют расщепленный коллаген, то есть его молекулу химически обрабатывают до потери видовой идентичности (дробят на очень мелкие части). Инъекции с коллагеном лишь восполняют его дефицит в коже, дают хороший косметический результат, но дополнительное введение коллагена в кожу не способствует синтезу собственного коллагена, а полностью блокирует его выработку.

В медицине существует такой термин, как заместительная терапия. Это когда пациенту назначают вещества (ферменты или гормоны), в которых он испытывает дефицит. Длительное применение таких лекарственных препаратов приводит к торможению собственного синтеза этих веществ, и в результате все только усложняется.

То есть выражение «сидеть на коллагеновых инъекциях» становится объективной реальностью. Примерно через 3-6 месяцев коллаген полностью расщепляется в организме, и для поддержания косметического эффекта требуется введение новых порций.

К тому же употребление чужеродного коллагена может вызвать аллергическую реакцию и его отторжение, несмотря на высокую степень отчистки продукта.

Для того чтобы запустить синтез собственного коллагена, необходима стимуляция аутологичных (собственных) фибробластов (клетки соединительной ткани, вырабатывающие коллаген, эластин и гиалуроновую кислоту).

В этом случае следует обратиться к процедурам на основе регенеративных технологий, которые запускают естественные процессы омоложения. На данный момент существуют несколько таких технологии: плазмолифтинг, плацентотерапия, применение основных аминокислот коллагена и SPRS-терапия (клеточная терапия на основе аутологичных фибробластов). Плазмолифтинг и плацентотерапия – достаточно известные техники.

Остановимся на последних двух методиках.

Применение основных аминокислот коллагена

Как известно, белки состоят из ключевых аминокислот, и коллаген не является исключением. Он состоит из пролина, лизина, глицина. Также в его состав входят две редкие аминокислоты: оксипролин и оксилизин, которые почти не встречаются в других белках. Соответственно, повышая их поступление в дерму, можно увеличить выработку собственного коллагена.

SPRS-терапия (клеточная терапия на основе аутологичных фибробластов)

Все регенерирующие технологии на основе аутологичных (собственных) веществ способны «разбудить» клетки «от спячки» и заставить их вспомнить молодость. На этом принципе основывается техника плазмолифтинга и техника клеточного омоложения ACR (что в принципе одно и то же).

В чем заключается суть SPRS-терапии? У пациента делают забор материала (в данном случае кусочек кожи), затем путем стандартных технологий выделяют из него аутологичные фибробласты. Но в процессе культивирования осуществляют отсев и стимуляцию только активных и молодых клеток. Затем их размножают до необходимого количества и с помощью инъекций внедряют в те участки кожи, которые нуждаются в коррекции.

Молодые, активные, а главное, собственные фибробласты с легкостью запускают обменные процессы в клетках и способствуют регенерации кожи. В настоящее время данная методика получила мировое признание и с успехом применяется как в России, так и в зарубежных странах.

Что такое фибробласты

Фибробласты – это клетки соединительной ткани, которые синтезируют межклеточный матрикс. Фибробласты выделяют предшественников коллагена и эластина, а также гликозаминогликанов, самая известная из которых – гиалуроновая кислота. Фибробласты являются зародышевой тканью как у человека, так и у животных. Фибробласты имеют разнообразную форму, в зависимости от местонахождения в организме и от уровня своей активности. Слово «фибробласты произошли от латинского корня «фибра» – волокно и греческого «бластос» – зародыш.


Фибробласты – это клетки, которые синтезируют межклеточный матрикс

Основная роль фибробластов в организме – синтез компонентов внеклеточного матрикса:

  • белков (коллагена и эластина), которые образуют фиброволокна;
  • мукополисахаридов (аморфное вещество).

В коже фибробласты отвечают за процесс ее восстановления и обновления. Они синтезируют коллаген и эластин – основной каркас кожи и гиалуроновую кислоту, связывающую в тканях воду. Другими словами, именно фибробласты являются генераторами молодости и красоты нашей кожи. С годами число фибробластов уменьшает, а оставшиеся фибробласты теряют свою активность.

По этой причине темпы регенерации кожных покровов снижаются, коллаген и эластин теряют свою упорядоченную структуру, в результате чего появляется больше поврежденных волокон, неспособных выполнять свои прямые функции. В итоге, наступает возрастное увядание кожи: дряблость, сухость, потеря объемов и появление морщин.

Под влиянием Уф-излучения в коже образуются свободные радикалы, разрушающие коллагеновые и эластические волокна. Но не только свободные радикалы разрушают коллаген и эластин. В процессе разрушения коллагена и эластина также задействованы ферменты коллагеназа и эластаза, которые тоже синтезируются фибробластами. Ферменты расщепляют волокна белков на основные компоненты, из которых затем фибробласты вырабатывают предшественников коллагена и эластина.

Можно сказать, что фибробласты играют ключевую роль в процессе круговорота деградации и синтеза клеток и волокон.

Еще раз назовем основные функции фибробластов в организме:

  • способствуют эпителизации и заживлению поврежденной кожи за счет стимуляции кератиноцитов;
  • ускоряют пролиферацию и дифференцировку клеток;
  • играют большую роль в заживлении ран, способствуют перемещению фагоцитов;
  • синтезируют коллаген, эластин и гиалуроновую кислоту;
  • участвуют в процессах регенерации и обновления кожных покровов.

Как активизировать фибробласты?

Выше мы узнали, каковы причины старения организма, и какую роль в этом процессе играют фибробласты. И тут рождается вполне закономерный вопрос: как активизировать фибробласты? Ведь с возрастом их количество не просто снижается, даже если количество фибробластов остается прежним, они становятся пассивными и полностью теряют свою активность. Задача регенеративных биотехнологий найти способы воздействия на фибробласты, чтоб заставить их «вспомнить молодость». Есть ли успехи в этом направлении? С уверенностью можно сказать, что да.

Восполнение в кожи белков молодости – коллагена и эластина – инъекционным методом не дает надежных результатов омоложения. Они способны улучшить характеристики кожи лишь на некоторое время. То есть состояние кожи становится лучше, но процесс старения не приостановлен, биологические часы неумолимо идут вперед. И через некоторое время, после деградации коллагена, эластина и гиалуроновой кислоты, состояние кожи оставляет желать лучшего.

Лучшее средство омоложения – это наша естественная система обновления и регенерации. Стимуляция собственных ресурсов организма – вот ключ к нашей молодости. На данный момент существуют регенеративные биотехнологии, способные действительно омолодить организм. Главенствующая роль в этих методиках отводится фибробластам.

Современные регенеративные технологии

В основе современных регенеративных технологий стоит принцип стимуляции аутологичных дермальных фибробластов. Суть этих технологий заключается в пополнении популяции фибробластов молодыми и активными клетками. Этот метод называется SPRS-терапия, что буквально обозначает service for personal regeneration of skin (сервис для индивидуального восстановления кожи).

Как же это происходит? Из кусочка кожи путем определенных лабораторных манипуляций выделяют фибробласты. Отбору и стимуляции подвергаются только молодые и активные фибробласты. Затем их популяция в течение некоторого времени доводится до нужных объемов, и они готовы для внедрения в организм. При внедрении аутологичных (собственных) фибробластов не наблюдается отторжений и аллергических реакций, так как в организм поступают свои собственные клетки.

Новые фибробласты способны регенерировать кожные покровы в течение двух лет и даже больше. Результат заметен сразу же после первого сеанса клеточной терапии. Происходит заметное улучшение кожных покровов: исчезает дряблость и сухость, улучшается цвет лица и структура кожи, полностью исчезают мелкие морщины, а глубокие становятся менее заметными.

Фибробласты, стволовые клетки и онкогенез

Многие пациенты отождествляют фибробласты со стволовыми клетками. Поэтому часто задают вопрос, не являются ли фибробласты стволовыми клетками? Нет, нет и еще раз нет. Фибробласты не имеют никакого отношения к стволовым клеткам, использование которых, к слову сказать, запрещено во всем мире. Фибробласты относятся к зрелым, специализированным для определенной ткани клеткам.

Они способны превратиться только в фиброциты. Фиброциты – это тоже клетки соединительной ткани, которые не способны делиться. Стволовые клетки – это незрелые, недифференцированные клетки, которые могут дать начало нескольким типам клетки и из которых можно вырастить любую ткань нашего организма.

Другой вопрос, часто задаваемый пациентами, способны ли аутологичные фибробласты переродиться в опухолевые клетки? Это совершенно невозможно. Фибробласты не способны переродится в злокачественные клетки, потому что они не поддаются непрямому делению клеток (митозу). Они запрограммированы на определенное количество делений, после чего погибают, а их место занимают новые клетки.

После внедрения в кожу фибробласты не делятся, но продолжительное время вырабатывают необходимые вещества, способствующие регенерации и омоложению кожи. Таким образом, они остаются совершенно безопасными аутологичными фибробластами как в процессе культивирования в лаборатории, так и в процессе внедрения в организм.

Культивированные аутологичные фибробласты подвергаются строгому контролю на предмет биологической безопасности и жизнеспособности клеток.

Биологическая химия Лелевич Владимир Валерьянович

Коллаген.

Коллаген.

В межклеточном матриксе молекулы коллагена образуют полимеры, называемые фибриллами коллагена. Они обладают огромной прочностью и практически не растяжимы (они могут выдерживать нагрузку в 10 000 раз превышающую их собственный вес.

Необычные механические свойства коллагена связаны с их первичной и пространственной структурами. Молекулы коллагена состоят из трех полипептидных цепей, называемых a-цепями. Идентифицировано более 20 a-цепей, большинство из которых имеет в своем составе 1000 аминокислотных остатков, но цепи несколько отличаются аминокислотной последовательностью. В состав коллагенов могут входить три одинаковые или разные цепи.

Первичная структура a-цепей коллагена необычна, так как каждая третья аминокислота в полипептидной цепи представлена глицином, около 25% составляют пролин или 4-гидроксипролин, около 10% – аланин. В коллагене отсутствуют такие аминокислоты, как цистеин и триптофан. В составе первичной структуры a-цепи коллагена содержится так же необычная аминокислота гидроксилизин.

Катаболизм коллагена. Как и любой белок, коллаген функционирует в организме определенное время. Его относят к медленно обменивающимся белкам, период его полураспада составляет около месяца. Разрушение коллагеновых волокон осуществляется ферментативно и с помощью активных форм кислорода.

Рис. 34.1. Этапы формирования коллагенового волокна.

Нативный коллаген не гидролизуется обычными пептидогидролазами. Основной фермент его катаболизма – коллагеназа, которая расщепляет пептидные связи в определенных участках спирализованных областей коллагена. В норме она синтезируется клетками соединительной ткани, прежде всего фибробластами и макрофагами. Образующиеся фрагменты коллагена растворимы в воде, при температуре тела они спонтанно денатурируются и становятся доступными для действия других протеолитических ферментов.

Существует ряд заболеваний, связанных с нарушением структуры или синтеза коллагена. Они составляют целую группу заболеваний соединительной ткани, названных коллагенозами. Так как около 50% всех коллагеновых белков содержится в тканях скелета, около 40% - в коже и 10% – в строме внутренних оганов, клиническая картина этих заболеваний будет крайне полиморфной. При многих заболеваниях наблюдаются не только костно-суставная патология или изменения со стороны кожи, но и ярко выраженные висцеральные проявления (поражения кишечника, почек, легких, сердца). К наиболее распространенным и изученным коллагенозам относят несовершенный остеогенез, синдром Элерс-Данлоса, синдром Марфана, а так же цингу.

Составляющий от 25 % до 35 % белков во всём теле.

Энциклопедичный YouTube

    1 / 3

    ✪ Золотая мазь из аптеки за 14 руб лечит 100 болезней. Копеечное забытое средство. Это вообще законно?

    ✪ АУТОФАГИЯ и ГОЛОДАНИЕ. Нобелевская премия за ВЕЧНУЮ ЖИЗНЬ!? Лечим РАК за ДЕНЬ

    ✪ Собственно соединительные ткани 1. РВСТ

    Субтитры

История исследования

Учёные десятилетиями не могли понять молекулярное строение коллагена. Первое доказательство того, что коллаген имеет постоянное строение на молекулярном уровне, было представлено в середине 1930-х годов. С того времени много выдающихся учёных, включая Нобелевских лауреатов, таких как Фрэнсис Крик , Лайнус Полинг , Александр Рич , Ада Йонат , Хелен Берман, Вилеайнур Рамачандран , работали над строением мономера коллагена.

Несколько противоречащих друг другу моделей (несмотря на известное строение каждой отдельной пептидной цепи) дали дорогу для создания троично-спиральной модели, объяснившей четвертичное строение молекулы коллагена.

Свойства

Коллаген существует в нескольких формах. Основа строения всех видов коллагена является схожей. Коллагеновые волокна образуются путём агрегации микрофибрилл, имеют розовый цвет при окраске гематоксилином и эозином и голубой или зелёный при различных трёххромных окрасках, при импрегнации серебром окрашиваются в буро-жёлтый цвет.

Фибриллярная структура

Тропоколлагены (структурные единицы коллагена) спонтанно объединяются, прикрепляясь друг к другу смещенными на определённое расстояние концами, образуя в межклеточном веществе более крупные структуры. В фибриллярных коллагенах молекулы смещены относительно друг друга примерно на 67нм (единица, которая обозначается буквой «D» и меняется в зависимости от состояния гидратации вещества). В целом каждый D-период содержит четыре целых и часть пятой молекулы коллагена. Величина 300 нм, поделенная на 67 нм (300:67) не дают целого числа и длина молекулы коллагена разделена на непостоянные по величине отрезки D. Следовательно, в разрезе каждого повтора D-периода микрофибриллы есть часть, состоящая из пяти молекул, называемая «перекрытие», и часть, состоящая из четырёх молекул - «разрыв». Тропоколлагены к тому же скомпонованы в шестиугольную или псевдошестиугольную (в поперечном разрезе) конструкцию, в каждой области «перекрытия» и «разрыва».

Внутри тропоколлагенов существует ковалентная связь между цепями, а также некоторое непостоянное количество данных связей между самими тропоколагеновыми спиралями, образующими хорошо организованные структуры (например, фибриллы). Более толстые пучки фибрилл формируются с помощью белков нескольких других классов, включая другие типы коллагенов, гликопротеины , протеогликаны, использующихся для формирования различных типов тканей из разных комбинаций одних и тех же основных белков. Нерастворимость коллагена была препятствием к изучению мономера коллагена, до того момента как было обнаружено, что возможно извлечь тропоколлаген молодого животного, поскольку он ещё не образовал сильных связей с другими субъединицами фибриллы. Тем не менее, усовершенствование микроскопов и рентгеновских аппаратов облегчили исследования, появлялось все больше подробных изображений структуры молекулы коллагена. Эти поздние открытия очень важны для лучшего понимания того, как структура коллагена влияет на связи между клетками и межклеточным веществом , как ткани меняются во время роста и регенерации , как они меняются во время эмбрионального развития и при патологии .

Коллагеновая фибрилла - это полукристаллическая структурная единица коллагена. Коллагеновые волокна - это пучки фибрилл.

Использование

Пищевая промышленность

С точки зрения питания, коллаген и желатин являются белками низкого качества, так как они не содержат всех незаменимых аминокислот , необходимых человеку - это неполноценные белки. Производители основанных на коллагене пищевых добавок утверждают, что их продукты могут улучшить качество кожи и ногтей, а также здоровье суставов [ ] .

Относительно дешёвые, часто предлагаемые сегодня на рынке под видом источника свободных аминокислот гидролизаты коллагена не всегда способны удовлетворить потребности человека в свободных аминокислотах, так как эти продукты не содержат готовые к усвоению аминокислоты, а являются лишь частично «переваренными» экстрактами суставных тканей млекопитающих, птиц или обитателей моря. Например, гидролизаты коллагена почти полностью лишены аминокислоты L-глютамина , не отличающейся стойкостью к термическому воздействию и долгому хранению сырья, большая часть глютамина разрушается уже на первых этапах хранения и переработки сырья, имеющийся небольшой остаток практически полностью распадается во время термической экстракции хрящевой ткани.

Наиболее качественными источниками аминокислот являются препараты, содержащие так называемые «свободные аминокислоты». Так как именно свободные аминокислоты являются практически готовыми к усвоению, организму не нужно тратить пищеварительные ферменты, время и энергию на их переваривание. Они способны в кратчайшие сроки поступить в кровь и, будучи доставленными ею к местам, нуждающимся в дополнительном синтезе коллагена, тут же включаются в его формирование [ ] .

Косметические средства

  1. Образования воздухопроницаемого, влагоудерживающего слоя на поверхности кожи, обладающего пластифицирующими (разглаживающими) свойствами, со свойствами влажного компресса;
  2. Продления действия экстрактов, масел и др. в составе косметических композиций;
  3. Придания блеска волосам, создания коллагенового (защитного) слоя на поверхности волос.

Научные исследования

В 2005 году учёным удалось выделить коллаген из сохранившихся мягких тканей тираннозавра и использовать его химический состав как ещё одно доказательство родства динозавров с современными птицами .

Научные исследования в медицине

Синтез коллагена - сложный ферментативный многостадийный процесс, который должен быть обеспечен достаточным количеством витаминов и минеральных элементов. Синтез протекает в фибробласте и ряд стадий вне фибробласта . Важный момент в синтезе - реакции гидроксилирования, которые открывают путь дальнейшим модификациям, необходимым для созревания коллагена. Катализируют реакции гидроксилирования специфические ферменты. Так, образование 4-оксипролина катализирует пролингидроксилаза, в активном центре которой находится железо. Фермент активен в том случае, если железо находится в двухвалентной форме, что обеспечивается аскорбиновой кислотой (витамин С). Дефицит аскорбиновой кислоты нарушает процесс гидроксилирования, что влияет на дальнейшие стадии синтеза коллагена: гликозилирование , отщепление N- и С-концевых пептидов и др. В результате синтезируется аномальный коллаген, более рыхлый. Эти изменения лежат в основе развития цинги . Коллаген и эластин формируют своеобразную «основу» кожи, которая предотвращает её обвисание, обеспечивает её эластичность и упругость. Эластин как белок прекращает выработку ферментов в человеческом организме в 14 лет, а коллаген - в 21-25, после чего кожные покровы не восстанавливаются и кожа стареет. Также важнейшим компонентом соединительной ткани является кератин - семейство фибриллярных белков, обладающих механической прочностью, которая среди материалов биологического происхождения уступает лишь хитину. В основном из кератинов состоят роговые производные эпидермиса кожи - такие структуры, как волосы, ногти, рога, перья и др.

Фотография

Характерным проявлением этих заболеваний является повреждение связочного аппарата, хрящей , костной системы , наличие пороков сердечных клапанов.

Болезни, вызванные дефектами при биосинтезе коллагена, в том числе так называемые коллагенозы, возникают из-за множества причин. Это может быть из-за мутации в гене, кодирующем аминокислотную последовательность ферментов, продуцирующих коллаген, приводящей к изменению формы коллагеновой молекулы, или ошибки в посттранстляционной модификации коллагена. Также болезни могут быть вызваны недостатком или «неправильной работой» ферментов, вовлеченных в биосинтез коллагена - дефицит ферментов гидроксилирования (пролин-, лизингидроксилазы), гликозилтрансфераз , N-проколлагеновой и С-проколлагеновой пептидаз , лизилоксидаз с последующим нарушением поперечных сшивок, дефицит меди, витаминов В6 , В13 (оротовая кислота), . При приобретённых болезнях, таких как цинга, восстановление баланса ферментов до нормального может привести к полному излечению.

Практически любая генная мутация ведёт к утрате или изменению функций коллагена, что, в свою очередь, отражается на свойствах тканей и органов. Генные мутации в коллагеновом домене могут привести к изменению формы тройной спирали путём вставки/выпадения аминокислоты из полипептидной цепочки или замены Gly на другое основание. Мутации в неколлагеновых доменах могут привести к неправильной пространственной сборке α-цепей в надмолекулярные структуры (фибриллы или сети), что также ведёт к утрате функций. Мутантные α-цепи способны образовывать трёхспиральный комплекс с нормальными α-цепями. В большинстве случаев, такие комплексы нестабильны и быстро разрушаются, однако, такая молекула может и нормально выполнять свою роль, если не затронуты функционально важные области. Большинство болезней, вызванных мутациями в «коллагеновых» генах, являются

  • 4. Роль металлов в регуляции активности ферментов
  • 1. Механизм "пинг-понг"
  • 2. Последовательный механизм
  • 17. Ингибирование ферментов: обратимое и необратимое; конкурентное и неконкурентное. Лекарственные препараты как ингибиторы ферментов.
  • 1. Конкурентное ингибирование
  • 2. Неконкурентное ингибирование
  • 1. Специфические и неспецифические ингибиторы
  • 2. Необратимые ингибиторы ферментов как лекарственные препараты
  • 19. Регуляция каталитической активности ферментов ковалентной модификацией путем фосфорилирования и дефосфорилирования (на примере ферментов синтеза и распада гликогена).
  • 20. Ассоциация и диссоциация протомеров на примере протеинкиназы а и ограниченный протеолиз при активации протеолитических ферментов как способы регуляции каталитической активности ферментов.
  • 21. Изоферменты, их происхождение, биологическое значение, привести примеры. Определение ферментов и изоферментного спектра плазмы крови с целью диагностики болезней.
  • 22. Энзимопатии наследственные (фенилкетонурия) и приобретенные (цинга). Применение ферментов для лечения болезней.
  • 23. Общая схема синтеза и распада пиримидиновых нуклеотидов. Регуляция. Оротацидурия.
  • 24. Общая схема синтеза и распада пуриновых нуклеотидов. Регуляция. Подагра.
  • 27. Азотистые основания, входящие в структуру нуклеиновых кислот – пуриновые и пиримидиновые. Нуклеотиды, содержащие рибозу и дезоксирибозу. Структура. Номенклатура.
  • 27. Гибридизация нуклеиновых кислот. Денатурация и ренативация днк. Гибридизация (днк-днк, днк-рнк). Методы лабораторной диагностики, основанные на гибридизации нуклеиновых кислот.(пцр)
  • 29. Репликация. Принципы репликации днк. Стадии репликации. Инициация. Белки и ферменты, принимающие участие в формировании репликативной вилки.
  • 30. Элонгация и терминация репликации. Ферменты. Асимметричный синтез днк. Фрагменты Оказаки. Роль днк-лигазы в формировании непрерывной и отстающей цепи.
  • 31. Повреждения и репарация днк. Виды повреждений. Способы репарации. Дефекты репарационных систем и наследственные болезни.
  • 32. Транскрипция Характеристика компонентов системы синтеза рнк. Структура днк-зависимой рнк-полимеразы: роль субъединиц (α2ββ′δ). Инициация процесса. Элонгация, терминация транскрипции.
  • 33. Первичный транскрипт и его процессинг. Рибозимы как пример каталитической активности нуклеиновых кислот. Биороль.
  • 35. Сборка полипептидной цепи на рибосоме. Образование инициаторного комплекса. Элонгация: образование пептидной связи (реакция транспептидации). Транслокация. Транслоказа. Терминация.
  • 1. Инициация
  • 2. Элонгация
  • 3. Терминация
  • 36. Особенности синтеза и процессинга секретируемых белков (на примере коллагена и инсулина).
  • 37. Биохимия питания. Основные компоненты пищи человека, их биороль, суточная потребность в них. Незаменимые компоненты пищи.
  • 38. Белковое питание. Биологическая ценность белков. Азотистый баланс. Полноценность белкового питания, нормы белка в питании, белковая недостаточность.
  • 39. Переваривание белков: протеазы жкт, их активация и специфичность, оптимум рН и результат действия. Образование и роль соляной кислоты в желудке. Защита клеток от действия протеаз.
  • 1. Образование и роль соляной кислоты
  • 2.Механизм активации пепсина
  • 3.Возрастные особенности переваривания белков в желудке
  • 1. Активация панкреатических ферментов
  • 2. Специфичность действия протеаз
  • 41. Витамины. Классификация, номенклатура. Провитамины. Гипо-, гипер- и авитаминозы, причины возникновения. Витаминзависимые и витаминрезистентные состояния.
  • 42. Минеральные вещества пищи, макро- и микроэлементы, биологическая роль. Региональные патологии, связанные с недостатком микроэлементов.
  • 3. Жидкостностъ мембран
  • 1. Структура и свойства липидов мембран
  • 45. Механизмы переноса веществ через мембраны: простая диффузия, пассивный симпорт и антипорт, активный транспорт, регулируемые каналы. Мембранные рецепторы.
  • 1. Первично-активный транспорт
  • 2. Вторично-активный транспорт
  • Мембранные рецепторы
  • 3.Эндергонические и экзергонические реакции
  • 4. Сопряжение экзергонических и эндергонических процессов в организме
  • 2. Строение атф-синтазы и синтез атф
  • 3.Коэффициент окислительного фосфорилирования
  • 4.Дыхательный контроль
  • 50. Образование активных форм кислорода (синглетный кислород, пероксид водорода, гидроксильный радикал, пероксинитрил). Место образования, схемы реакций, их физиологическая роль.
  • 51. . Механизм повреждающего действия активных форм кислорода на клетки (пол, окисление белков и нуклеиновых кислот). Примеры реакций.
  • 1) Инициация: образование свободного радикала (l )
  • 2) Развитие цепи:
  • 3) Разрушение структуры липидов
  • 1. Строение пируватдегидрогеназного комплекса
  • 3. Связь окислительного декарбоксилирования пирувата с цпэ
  • 53.Цикл лимонной кислоты: последовательность реакций и характеристика ферментов. Роль цикла в метаболизме.
  • 1. Последовательность реакций цитратного цикла
  • 54. Цикл лимонной кислоты, схема процесса. Связь цикла с целью переноса электронов и протонов. Регуляция цикла лимонной кислоты. Анаболические и анаплеротические функции цитратного цикла.
  • 55. Основные углеводы животных, биологическая роль. Углеводы пищи, переваривание углеводов. Всасывание продуктов переваривания.
  • Методы определение глюкозы в крови
  • 57. Аэробный гликолиз. Последовательность реакций до образования пирувата (аэробный гликолиз). Физиологическое значение аэробного гликолиза. Использование глюкозы для синтеза жиров.
  • 1. Этапы аэробного гликолиза
  • 58. Анаэробный гликолиз. Реакция гликолитической оксидоредукции; субстратное фосфорилирование. Распространение и физиологическое значение анаэробного распада глюкозы.
  • 1. Реакции анаэробного гликолиза
  • 59. Гликоген, биологическое значение. Биосинтез и мобилизация гликогена. Регуляция синтеза и распада гликогена.
  • 61. Наследственные нарушения обмена моносахаридов и дисахаридов: галактоземия, непереносимость фруктозы и дисахаридов. Гликогенозы и агликогенозы.
  • 2. Агликогенозы
  • 62. Липиды. Общая характеристика. Биологическая роль. Классификация липидов.Высшие жирные кислоты, особенности строения. Полиеновые жирные кислоты. Триацилглицеролы..
  • 64. Депонирование и мобилизация жиров в жировой ткани, физиологическая роль этих процессов. Роль инсулина, адреналина и глюкагона в регуляции метаболизма жира.
  • 66. Распад жирных кислот в клетке. Активация и перенос жирных кислот в митохондрии. Β-окисление жирных кислот, энергетический эффект.
  • 67. Биосинтез жирных кислот. Основные стадии процесса. Регуляция обмена жирных кислот.
  • 2. Регуляция синтеза жирных кислот
  • 69. Холестерин. Пути поступления, использования и выведения из организма. Уровень холестерина в сыворотке крови. Биосинтез холестерина, его этапы. Регуляция синтеза.
  • Фонд холестерола в организме, пути его использования и выведения.
  • 1. Механизм реакции
  • 2. Органоспецифичные аминотрансферазы ант и act
  • 3. Биологическое значение трансаминирования
  • 4. Диагностическое значение определения аминотрансфераз в клинической практике
  • 1. Окислительное дезаминирование
  • 74. Непрямое дезаминирование аминокислот. Схема процесса, субстраты, ферменты, кофакторы.
  • 3. Неокислительное дезамитровате
  • 76. Оринитиновый цикл мочевинообразования. Химизм, место протекания процесса. Энергетический эффект процесса, его регуляция. Количественное определение мочевины сыворотки крови, клиническое значение.
  • 2. Образование спермидина и спермина, их биологическая роль
  • 78. Обмен фенилаланина и тирозина. Особенности обмена тирозина в разных тканях.
  • 79. Эндокринная, паракринная и аутокринная системы межклеточной коммуникации. Роль гормонов в системе регуляции метаболизма. Регуляция синтеза гормонов по принципу обратной связи.
  • 80. Классификация гормонов по химическому строению и биологическим функция.
  • 1. Классификация гормонов по химическому строению
  • 2. Классификация гормонов по биологическим функциям
  • 1. Общая характеристика рецепторов
  • 2. Регуляция количества и активности рецепторов
  • 82. Циклические амф и гмф как вторичные посредники. Активация протеинкиназ и фосфорилирование белков, ответственных за проявление гормонального эффекта.
  • 3. Передача сигналов через рецепторы, сопряжённые с ионными каналами
  • 85. Гормоны гипоталамуса и передней доли гипофиза, химическая природа и биологическая роль.
  • 2. Кортиколиберин
  • 3. Гонадолиберин
  • 4. Соматолиберин
  • 5.Соматостатин
  • 1. Гормон роста, пролактин
  • 2. Тиреотропин, лютеинизирующий гормон и фолликулостимулирующий гормон
  • 3. Группа гормонов, образующихся из проопиомеланокортина
  • 4. Гормоны задней доли гипофиза
  • 86. Регуляция водно-солевого обмена. Строение, механизмдействия и функции альдостерона и вазопрессина. Роль системы ренин-ангиотензин-альдостерон. Предсердный натриуретический фактор.
  • 1. Синтез и секреция антидиуретического гормона
  • 2. Механизм действия
  • 3. Несахарный диабет
  • 1. Механизм действия альдостерона
  • 2. Роль системы ренин-ангиотензин- альдостерон в регуляции водно-солевого обмена
  • 3. Восстановление объёма крови при обезвоживании организма
  • 4. Гиперальдостеронтм
  • 87. Регуляция обмена ионов кальция и фосфатов. Строение, биосинтез и механизм действия паратгормона, кальцитонина и кальцитриола.Причины и проявления рахита, гипо- и гиперпаратиреоидизма.
  • 1. Синтез и секреция птг
  • 2. Роль паратгормона в регуляции обмена кальция и фосфатов
  • 3. Гиперпаратиреоз
  • 4. Гипопаратиреоз
  • 1. Строение и синтез кальцитриола
  • 2. Механизм действия кальцитриола
  • 3. Рахит
  • 2. Биологические функции инсулина
  • 3. Механизм действия инсулина
  • 1. Инсулинзависимый сахарный диабет
  • 2. Инсулинонезависимый сахарный диабет
  • 1. Симптомы сахарного диабета
  • 2. Острые осложнения сахарного диабета. Механизмы развития диабетической комы
  • 3. Поздние осложнения сахарного диабета
  • 1. Биосинтез йодтиронинов
  • 2. Регуляция синтеза и секреции йодтиронинов
  • 3. Механизм действия и биологические функции йодтиронинов
  • 4. Заболевания щитовидной железы
  • 90. Гормоны коры надпочечников (кортикостероиды). Их влияние на метаболизм клетки. Изменения метаболизма при гипо- и гиперфункции коры надпочечников.
  • 3. Изменения метаболизма при гипо- и гиперфункции коры надпочечников
  • 91. Гормоны мозгового слоя надпочечников. Секреция катехоламинов. Механизм действия и биологические функции катехоламинов. Патология мозгового вещества надпочечников.
  • 1. Синтез и секреция катехоламинов
  • 2. Механизм действия и биологические функции катехоламинов
  • 3. Патология мозгового вещества надпочечников
  • 1. Основные ферменты микросомальных электронтранспортных цепей
  • 2. Функционирование цитохрома р450
  • 3. Свойства системы микросомального окисления
  • 93.Распад гема. Схема процесса, место протекания. «Прямой» и «непрямой» билирубин, его обезвреживание в печени.Диагностическое значение определения билирубина в крови и моче.
  • 94. . Нарушения катаболизма гема. Желтухи: гемолитическая, желтуха новорожденных, печеночно-клеточная, механическая, наследственная (нарушения синтеза удф-глюкуронилтрансферазы).
  • 1. Гемолитическая (надпечёночная) желтуха
  • 2. Печёночно-клеточная (печёночная) желтуха
  • 3. Механическая, или обтурационная (подпечёночная) желтуха
  • 1. Участие трансфераз в реакциях конъюгации
  • 2. Роль эпоксидгидролаз в образовании диолов
  • 96. Гемоглобины человека, структура. Транспорт кислорода и диоксида углерода. Гемоглобин плода и его физиологическое значение. Гемоглобинопатии.
  • 98. Белки сыворотки крови, биологическая роль основных фракций белков, значение их определения для диагностики заболеваний. Содержание и функции некоторых белков плазмы крови
  • 98. Ферменты плазмы крови, энзимодиагностика. Количественное определение активности аминотрансфераз (АлАт, АсАт).
  • Аминотрансферазы
  • Аланинаминотрансфераза (алат)
  • 99. Коллаген: особенности аминокислотного состава, первичной и пространственной структуры. Особенности биосинтеза и созревания коллагена. Роль аскорбиновой кислоты в созревании коллагена.
  • 104. Значение воды для жизнедеятельности организма. Распределение воды в тканях, понятие о внутриклеточной и внеклеточной жидкостях. Водный баланс, регуляция водного обмена.
  • 99. Коллаген: особенности аминокислотного состава, первичной и пространственной структуры. Особенности биосинтеза и созревания коллагена. Роль аскорбиновой кислоты в созревании коллагена.

    Коллагены - семейство родственных фибриллярных белков, секретируемых клетками соединительной ткани. Коллагены - самые распространённые белки не только межклеточного матрикса, но и организма в целом, они составляют около 1/4 всех белков организма человека. В межклеточном матриксе молекулы коллагена образуют полимеры, называемые фибриллами коллагена (более подробно это описано в разделе 15). Фибриллы коллагена обладают огромной прочностью и практически нерастяжимы. Они могут выдерживать нагрузку, в 10 000 раз превышающую их собственный вес. По прочности коллагеновые фибриллы превосходят прочность стальной проволоки того же сечения. Именно поэтому большое количество коллагеновых волокон, состоящих из коллагеновых фибрилл, входит в состав кожи, сухожилий, хрящей и костей.

    Необычные механические свойства коллагенов связаны с их первичной и пространственной структурами. Молекулы коллагена состоят из трёх полипептидных цепей, называемых α-цепями. Идентифицировано более 20 α-цепей, большинство которых имеет в своём составе 1000 аминокислотных остатков, но цепи несколько отличаются аминокислотной последовательностью. В состав коллагенов могут входить три одинаковые или разные цепи.

    Первичная структура α-цепей коллагена необычна, так капи, перевиваясь друг около друга, образуют трёхце-почечную правозакрученную суперспиральную молекулу, часто называемую тропоколлагеном. Цепи удерживаются друг около друга за счёт водородных связей, возникающих между амино- и карбоксильными группами пептидного остова разных полипептидных цепей, входящих в состав трёхспиральной молекулы. "Жёсткие" аминокислоты - пролин и гидроксипролин - ограничивают вращение полипептидного стержня и увеличивают тем самым стабильность тройной спирали. Глицин, имеющий вместо радикала атом водорода, всегда находится в месте пересечения цепей; отсутствие радикала позволяет цепям плотно прилегать друг к другу.

    В результате такого скручивания пептидных остовов полипептидных цепей и наличия удлинённой структуры два других радикала из триады аминокислот Гли-X-Y оказываются на наружной поверхности молекулы тропоколлагена. Некоторые комплементарные участки молекул тропоколлагена могут объединяться друг с другом, формируя коллагеновые фибриллы, причём эти участки расположены таким образом, что одна нить тропоколлагена сдвинута по отношению к другой примерно на 1/4. Между радикалами аминокислот возникают ионные, водородные и гидрофобные связи.

    Важную роль в формировании коллагеновых фибрилл играют модифицированные аминокислоты: гидроксипролин и гидроксилизин. Гидроксильные группы гидроксипролина соседних цепей тропоколлагена образуют водородные связи, укрепляющие структуру коллагеновых фибрилл. Радикалы лизина и гидроксилизина необходимы для образования прочных поперечных сшивок между молекулами тропоколлагена, ещё сильнее укрепляющие структуру коллагеновых фибрилл. Кроме того, к гидроксильной группе гидроксилизина могут присоединяться углеводные остатки (гликозилирование коллагена), функция которых пока неясна.

    Таким образом, аминокислотная последовательность полипептидных цепей коллагена позволяет сформировать уникальную по своим механическим свойствам структуру, обладающую огромной прочностью. Изменение в первичной структуре коллагена может приводить к развитию наследственных болезней

    Синтез и созревание коллагена - сложный многоэтапный процесс, начинающийся в клетке, а завершающийся в межклеточном матриксе. Синтез и созревание коллагена включают в себя целый ряд посттрансляционных изменений:

      гидроксилирование пролина и лизина с образованием гидроксипролина (Hyp) и гидроксилизина (Hyl);

      гликозилирование гидроксилизина;

      частичный протеолиз - отщепление "сигнального" пептида, а также N- и С-концевых пропептидов;

      образование тройной спирали.

    Синтез полипептидных цепей коллагена

    Полипептидные цепи коллагена синтезируются на полирибосомах, связанных с мембранами ЭР, в виде более длинных, чем зрелые цепи, предшественников - препро-α-цепей. У этих предшественников имеется гидрофобный "сигнальный" пептид на N-конце, содержащий около 100 аминокислот.

    Основная функция сигнального пептида - ориентация синтеза пептидных цепей в полость ЭР. После выполнения этой функции сигнальный пептид сразу же отщепляется. Синтезированная молекула проколлагена содержит дополнительные участки - N- и С-концевые пропептиды, имеющие около 100 и 250 аминокислот, соответственно. В состав пропептидов входят остатки цистеина, которые образуют внутри- и межцепочечные (только в С-пептидах) S-S-связи. Концевые пропептиды не образуют тройную спираль, а формируют глобулярные домены. Отсутствие N- и С- концевых пептидов в структуре проколлагена нарушает правильное формирование тройной спирали.

    Посттрансляционные модификации коллагена

    Гидрокслирование пролина и лизина. Роль витамина С

    Гидроксилирование пролина и лизина начинается в период трансляции коллагеновой мРНК на рибосомах и продолжается на растущей полипептидной цепи вплоть до её отделения от рибосом. После образования тройной спирали дальнейшее гидроксилирование пролиловых и лизиловых остатков прекращается.

    Реакции гидроксилирования катализируют оксигеназы, связанные с мембранами микросом. Пролиловые и лизиловые остатки в Y-положении пептида (Гли-х-у) n подвергаются действию, соответственно, пролил-4-гидроксилазы и лизил-5-гидроксилазы. Пролил-3-гидроксилаза действует на некоторые остатки пролина в Х-положениях. Необходимыми компонентами этой реакции являются оскетоглутарат, О 2 и витамин С (аскорбиновая кислота). Донором атома кислорода, который присоединяется к С-4 пролина, является молекула О 2 , второй атом О 2 включается в сукцинат, который образуется при декарбоксилировании α-кетоглутарата, а из карбоксильной группы а-кетоглутарата образуется СО 2 .

    Гидроксилазы пролина и лизина содержат в активном центре атом железа Fe 2+ . Для сохранения атома железа в ферроформе необходим восстанавливающий агент. Роль этого агента выполняет кофермент гидроксилаз - аскорбиновая кислота, которая легко окисляется в дегидроаскорбиновую кислоту. Обратное превращение происходит в ферментативном процессе за счёт восстановленного глутатиона

    Гидроксилирование пролина необходимо для стабилизации тройной спирали коллагена, ОН-группы гидроксипролина (Hyp) участвуют в образовании водородных связей. А гидроксилирование лизина очень важно для последующего образования ковалентных связей между молекулами коллагена при сборке коллагеновых фибрилл. При цинге - заболевании, вызванном недостатком витамина С, нарушается гидроксилирование остатков пролина и лизина. В результате этого образуются менее прочные и стабильные коллагеновые волокна, что приводит к большой хрупкости и ломкости кровеносных сосудов с развитием цинги. Клиническая картина цинги характеризуется возникновением множественных точечных кровоизлияний под кожу и слизистые оболочки, кровоточивостью дёсен, выпадением зубов, анемией.

    Гликозилирование гидроксилизина

    После завершения гидроксилирования при участии специфических гликозилтрансфераз в состав молекулы проколлагена вводятся углеводные группы. Чаще всего этими углеводами служат галактоза или дисахарид галактозилглюкоза.

    Они образуют ковалентную О-гликозидную связь с 5-ОН-группой гидроксилизина. Гликозилирование гидроксилизина происходит в коллагене, ещё не претерпевшем спирализации, и завершается после образования тройной спирали. Число углеводных единиц в молекуле коллагена зависит от вида ткани. Так, например, в коллагене сухожилий (тип I) это число равно 6, а в коллагене капсулы хрусталика (тип IV) - НО. Роль этих углеводных групп неясна; известно только, что при наследственном заболевании, причиной которого является дефицит лизилгидроксилазы (синдром Элерса - Данло-Русакова, тип VI), содержание гидроксилизина и углеводов в образующемся коллагене снижено; возможно, это является причиной ухудшения механических свойств кожи и связок у людей с этим заболеванием.

    Образование проколлагена и его секреция в межклеточное пространство

    После гидроксилирования и гликозилирования каждая про-α-цепь соединяется водородными связями с двумя другими про-α-цепями, образуя тройную спираль проколлагена. Эти процессы происходят ещё в просвете ЭР и начинаются после образования межцепочечных дисульфидных мостиков в области С-концевых пропептидов. Из ЭР молекулы проколлагена перемещаются в аппарат Гольджи, включаются в секреторные пузырьки и секретируются в межклеточное пространство.

    100. Структурная организация межклеточного матрикса. Адгезивные белки межклеточного матрикса: фибронектин и ламинин, их строение и функции. Строение и функции гликозаминогликанов (гиалуроновой кислоты, хондроитинсульфатов, гепарина). Структура протеогликанов.

    Гликозаминогликаны - линейные отрицательно заряженные гетерополисахариды. Раньше их называли мукополисахаридами, так как они обнаруживались в слизистых секретах (мукоза) и придавали этим секретам вязкие, смазочные свойства. Эти свойства обусловлены тем, что гликозаминогликаны могут связывать большие количества воды, в результате чего межклеточное вещество приобретает желеобразный характер.

    Протеогликаны - высокомолекулярные соединения, состоящие из белка (5-10%) и гликозаминогликанов (90-95%). Они образуют основное вещество межклеточного матрикса соединительной ткани и могут составлять до 30% сухой массы ткани.

    Белки в протеогликанах представлены одной полипептидной цепью разной молекулярной массы. Полисахаридные компоненты у разных протеогликанов разные. Протеогликаны отличаются от большой группы белков, которые называют гликопротеинами. Эти белки тоже содержат олигосахаридные цепи разной длины, ковалентно присоединённые к полипептидной основе. Углеводный компонент гликопротеинов гораздо меньше по массе, чем у протеогликанов, и составляет не более 40% от общей массы. Гликопротеины выполняют в организме человека разные функции и присутствуют во всех классах белков - ферментах, гормонах, транспортных, структурных белках и др. Представители гликопротеинов - коллаген и эластин, иммуноглобулины, ангиотензиноген, трансферрин, церулоплазмин, внутренний фактор Касла, тиреотропный гормон.

    Гликозаминогликаны и протеогликаны, являясь обязательными компонентами межклеточного матрикса, играют важную роль в межклеточных взаимодействиях, формировании и поддержании формы клеток и органов, образовании каркаса при формировании тканей.

    Благодаря особенностям своей структуры и физико-химическим свойствам, протеогликаны и гликозаминогликаны могут выполнять в организме человека следующие функции:

      они являются структурными компонентами межклеточного матрикса;

      протеогликаны и гликозаминогликаны специфически взаимодействуют с коллагеном, эластином, фибронектином, ламинином и другими белками межклеточного матрикса;

      все протеогликаны и гликозаминогликаны, являясь полианионами, могут присоединять, кроме воды, большие количества катионов (Na + , K+, Са 2+) и таким образом участвовать в формировании тургора различных тканей;

      протеогликаны и гликозаминогликаны играют роль молекулярного сита в межклеточном матриксе, они препятствуют распространению патогенных микроорганизмов;

      гиалуроновая кислота и протеогликаны выполняют рессорную функцию в суставных хрящах;

      гепарансульфатсодержащие протеогликаны способствуют созданию фильтрационного барьера в почках;

      кератансульфаты и дерматансульфаты обеспечивают прозрачность роговицы;

      гепарин - антикоагулянт;

      гепарансульфаты - компоненты плазматических мембран клеток, где они могут функционировать как рецепторы и участвовать в клеточной адгезии и межклеточных взаимодействиях. Они также выступают компонентами синаптических и других пузырьков.

    Строение и классы гликозаминогликатов

    Гликозаминогликаны представляют собой длинные неразветвлённые цепи гетерополиса-харидов. Они построены из повторяющихся дисахаридных единиц. Одним мономером этого дисахарида является гексуроновая кислота (D-глюкуроновая кислота или L-идуроновая), вторым мономером - производное аминосахара (глюкоз- или галактозамина). NH 2 -rpyппa аминосахаров обычно ацетилирована, что приводит к исчезновению присущего им положительного заряда. Кроме гиалуроновой кислоты, все гликозаминогликаны содержат сульфатные группы в виде О-эфиров или N-сульфата.

    Гиалуроновая кислота находится во многих органах и тканях. В хряще она связана с белком и участвует в образовании протеогликановых агрегатов, в некоторых органах (стекловидное тело глаза, пупочный канатик, суставная жидкость) встречается и в свободном виде. Предполагается, что в суставной жидкости гиалуроновая кислота выполняет роль смазочного вещества, уменьшая трение между суставными поверхностями.Гиалуроновая кислота содержит несколько тысяч дисахаридных единиц, молекулярная масса её достигает 10 5 - 10 7 Д.

    Хондроитинсульфаты - самые распространённые гликозаминогликаны в организме человека; они содержатся в хряще, коже, сухожилиях, связках, артериях, роговице глаза. Хондроитинсульфаты являются важным составным компонентом агрекана - основного протеогликана хрящевого матрикса. В организме человека встречаются 2 вида хондроитинсульфатов: хондроитин-4-сульфат и хондроитин-6-сульфат. Они построены одинаковым образом, отличие касается только положения сульфатной группы в молекуле N-ацетилгалактозамина.Одна полисахаридная цепь хондроитинсульфата содержит около 40 повторяющихся дисахаридных единиц и имеет молекулярную массу 10 4 - 10 6 Д.

    Кератансульфаты - наиболее гетерогенные гликозаминогликаны; отличаются друг от друга по суммарному содержанию углеводов и распределению в разных тканях. Кератансульфат I находится в роговице глаза и содержит кроме повторяющейся дисахаридной единицы L-фукозу, D-маннозу и сиаловую кислоту. Кератансульфат II был обнаружен в хрящевой ткани, костях, межпозвоночных дисках. В его состав помимо Сахаров дисахаридной единицы входят N-ацетилгалактозамин, L-фукоза, D-манноза и сиаловая кислота. Кератансульфат II входит в состав агрекана и некоторых малых протеогликанов хрящевого матрикса. В отличие от других гликозаминогликанов, кератансульфаты вместо гексуроновой кислоты содержат остаток галактозы.

    Молекулярная масса одной цепи кератансульфата колеблется от 4 × 10 3 до 20 × 10 3 Д.

    Дерматансульфат широко распространён в тканях животных, особенно он характерен для кожи, кровеносных сосудов, сердечных клапанов.В составе малых протеогликанов (бигликана и декорина) дерматансульфат содержится в межклеточном веществе хрящей, межпозвоночных дисков, менисков. Повторяющаяся дисахаридная единица дерматансульфата имеет следующую структуру. Молекулярная масса одной цепи дерматансульфата колеблется от 15 × 10 3 до 40 × 10 3 Д.

    Гепарин - важный компонент противосвёртывающей системы крови (его применяют как антикоагулянт при лечении тромбозов). Он синтезируется тучными клетками и находится в гранулах внутри этих клеток. Наибольшие количества гепарина обнаруживаются в лёгких, печени и коже. Дисахаридная единица гепарина похожа на дисахаридную единицу гепарансульфата. Отличие этих гликозаминогликанов заключается в том, что в гепарине больше N-сульфатных групп, а в гепарансульфате больше N-ацетильных групп. Молекулярная масса гепарина колеблется от 6 × 10 3 до 25 × 10 3 Д.

    Гепарансульфат находится во многих органах и тканях. Он входит в состав протеогликанов базальных мембран. Гепарансульфат является постоянным компонентом клеточной поверхности. Структура дисахаридной единицы гепарансульфата такая же, как у гепарина. Молекулярная масса цепи гепарансульфата колеблется от 5 × 10 3 до 12 × 10 3 Д.

    Cтроение и виды протеогликанов

    В межклеточном матриксе присутствуют разные протеогликаны. Среди них есть очень крупные - например агрекан и версикан. Кроме них, в межклеточном матриксе имеется целый набор так называемых малых протеогликанов, которые широко распространены в разных видах соединительной ткани и выполняют там самые разнообразные функции.

    Основной протеогликан хрящевого матрикса называется агрекан, он составляет 10% по весу исходной ткани и 25% сухого веса хрящевого матрикса. Это очень большая молекула, в которой к одной полипептидной цепи присоединены до 100 цепей хондроитинсульфатов и около 30 цепей кератансульфатов. По форме молекула агрекана напоминает бутылочный "ёршик" .

    В хрящевой ткани молекулы агрекана собираются в агрегаты с гаалуроновой кислотой и небольшим связывающим белком. Оба компонента присоединяются к агрекану нековалент-ными связями в области домена G 1 . Домен G 1 взаимодействует примерно с пятью дисахаридными единицами гиалуроновой кислоты, далее этот комплекс стабилизируется связывающим белком; домен G 1 и связывающий белок вместе занимают 25 дисахаридных единиц гиалуроновой кислоты. Конечный агрегат с молекулярной массой более 200 × 10 6 Д состоит из одной молекулы гиалуроновой кислоты и 100 молекул агрекана (и такого же количества связывающего белка). Координация сборки этих агрегатов является центральной функцией хондроцитов. Агрекан и связывающий белок продуцируются этими клетками в необходимых количествах. Эти компоненты могут взаимодействовать друг с другом внутри клетки, но процесс агрегации полностью завершается в межклеточном матриксе. Показано, что гиалуроновая кислота образуется на поверхности хондроцитов специфической синтетазой и "выталкивается" в межклеточное пространство, чтобы связаться с агреканом и связывающим белком. Созревание функционально активного тройного комплекса составляет около 24 ч.

    Малые протеогликаны

    Малые протеогликаны - протеогликаны с низкой молекулярной массой. Они содержатся в хрящах, сухожилиях, связках, менисках, коже и других видах соединительной ткани.

    Эти протеогликаны имеют небольшой коровый белок, к которому присоединены одна или две цепи гликозаминогликанов. Наиболее изучены декорин, бигликан, фибромодулин, люмикан, перлекан.

    Коровые белки бигликана и декорина похожи по размерам и структуре (молекулярная масса 36 000 и 38 000 Д, соответственно). Они имеют несколько тандемных повторов, богатых лейцином, которые образуют α-спирали или β-структуры. На N- и С-концах этих белков имеются домены, содержащие S-S-связи. Ко"ровые белки значительно различаются по первичной структуре в N-концевых областях, что определяет различия в присоединении гликозаминогликанов. Бигликан содержит серии в положениях 5 и 11, что обеспечивает присоединение двух полисахаридных цепей. Декорин содержит один серии в положении 4, поэтому к нему присоединяется одна полисахаридная цепь. У этих протеогликанов полисахаридные цепи представлены дерматансульфатом с молекулярной массой ~ 30 000 Д (рис. 15-17).

    Ко́ровый белок фибромодулина (молекулярная масса ~ 40 000 Д) тоже имеет области тандемных повторов, богатые лейцином, но его N-концевая область отличается тем, что не содержит серина, а имеет несколько сульфатированных остатков тирозина, поэтому одна или две цепи кератансульфата присоединяются к ко"ровому белку фибромодулина не в N-концевой, а в области, богатой лейцином, через NH 2 -группу аспарагина.

    Малые протеогликаны являются мультифункциональными макромолекулами. Они могут связываться с другими компонентами соединительной ткани и оказывать влияние на их строение и функции. Например, декорин и фибромодулин присоединяются к фибриллам коллагена II типа и ограничивают их диаметр (т.е. препятствуют образованию толстых фибрилл). Декорин и бигликан, присоединяясь к фибронектину, подавляют клеточную адгезию, а присоединяясь к фактору роста опухолей (3, снижают его митогенную активность. Кроме этого, имеется большое количество данных о том, что малые протеогликаны играют важную регуляторную роль в процессах развития и восстановления соединительной ткани.

    Протеогликаны базальных мембран

    Протеогликаны базальных мембран отличаются значительной гетерогенностью. Это преимущественно гепарансульфатсодержащие протеогликаны (ГСПГ), представленные двумя разновидностями: высокой и низкой плотности

    Структурная организация межклеточного матрикса. Адгезивные белки межклеточного матрикса: фибронектин и ламинин, их строение и функции.

    Белки межклеточного матрикса выполняют различные функции, но их можно разделить на две большие группы по одному весьма важному признаку: 1) белки, обладающие адгезивными свойствами; 2) белки, подавляющие адгезию клеток.

    А. Aдгезивные белки

    К первой группе белков с выраженными адгезивными свойствами относят фибронектин, ламинин, нидоген, фибриллярные коллагены и коллаген IV типа; их относят к белкам "зрелой" соединительной ткани.

    Фибронектин

    Фибронектин - один из ключевых белков межклеточного матрикса, неколлагеновый структурный гликопротеин, синтезируемый и выделяемый в межклеточное пространство многими клетками. Он построен из двух идентичных полипептидных цепей, соединённых дисульфидными мостиками у своих С-концов.

    Полипептидная цепь фибронектина содержит 7-8 доменов, на каждом из которых расположены специфические центры для связывания разных веществ. Фибронектин может связывать коллаген, протеогликаны, гиалуроновую кислоту, углеводы плазматических мембран, гепарин, фермент трансглутаминазу. Благодаря своей структуре фибронектин может выполнять интегрирующую роль в организации межклеточного вещества, а также способствовать адгезии клеток.

    Существует несколько форм фибронектина, которые синтезируются разными клетками. Растворимый, или плазменный, фибронектин синтезируется гепатоцитами. Нерастворимый, или тканевый фибронектин синтезируется в основном фибробластами или эндотелиоцитами, глиоцитами и эпителиальными клетками.

    Обе формы фибронектина вовлекаются в разнообразные процессы: способствуют адгезии и распространению эпителиальных и мезенхимальных клеток, стимулируют пролиферацию и миграцию эмбриональных и опухолевых клеток, контролируют дифференцировку и поддержание цитоскелета клеток, активно участвуют в воспалительных и репаративных процессах. Это связано с тем, что каждая субъединица фибронектина содержит последовательность Арг-Гли-Асп (RGD), с помощью которой он может присоединяться к клеточным рецепторам (интегринам). Эти рецепторы опосредованно взаимодействуют с актиновыми микрофиламентами, которые находятся в цитозоле. В этом процессе участвуют так называемые белки прикрепления (от англ. attach - прикреплять proteins ): талин, винкулин, α-актинин.

    С помощью таких белок-белковых взаимодействий информация может передаваться из межклеточного матрикса внутрь клетки, а также в обратном направлении - из клетки наружу, таким образом влияя на протекающие в клетке процессы.

    Известно также, что фибронектин участвует в миграции клеток, которые могут присоединяться к его RGD-участкам, и, таким образом, фибронектин как бы помогает им перемещаться в межклеточном матриксе.

    В межклеточном матриксе, окружающем трансформированные (или опухолевые) клетки, количество фибронектина заметно снижено, что может быть одной из причин появления метастазов.

    Ламинин - наиболее распространённый некол-лагеновый гликопротеин базальных мембран. Он состоит из трёх полипетидных цепей: А, В 1 и В 2 . Молекула ламинина имеет крестообразную форму с тремя одноцепочечными ветвями и одной трёхцепочечной ветвью. Каждая цепь ламинина содержит несколько глобулярных и стержневидных доменов, на которых имеются специфические центры связывания для различных веществ. Ламинин взаимодействует со всеми структурными компонентами базальных мембран, включая коллаген IV типа, нидоген, фибронектин, ГСПГ. Кроме того, молекула ламинина имеет несколько центров связывания с клетками. Главные функции ламинина определяются его способностью связывать клетки и модулировать клеточное поведение. Он может влиять на рост, морфологию, дифференцировку и подвижность клеток.

    Ламинин выполняет роль адгезивного белка для различных эпителиальных и мезенхимальных клеток.

    Нидоген - сульфатированный гликопротеин базальных мембран, образует с ламинином плотный, нековалентно связанный комплекс; сила связывания нидогена с коллагеном IV типа гораздо меньше, чем с ламинином. Этот белок представлен одной полипептидной цепью, содержащей три глобулярных домена. Один из доменов нидогена имеет центр связывания ламинина, в области другого домена находится центр связывания коллагена IV типа. Таким образом, нидоген может выступать в качестве одного из связывающих мостов между различными компонентами межклеточного матрикса и участвовать в образовании тройных комплексов ламинин-нидоген-коллаген. Кроме этого, нидоген содержит RGD-последовательность и поэтому может присоединяться к клеточной поверхности.

    Антиадгезивные белки

    Ко второй группе белков, обладающих антиадгезивными свойствами, относят такие гликопротеины, как остеонектин, тенасцин и тромбоспондин. Эти белки появляются и играют заметную роль в эмбриогенезе и морфогенезе, развитии клеточного ответа на повреждение. Их концентрация в матриксе повышается при некоторых опухолевых заболеваниях.

    Остеонектин (синонимы: ВМ-40, SPARC, от англ, secreted protein acidic and rich in cysteine ) состоит из 4 доменов, к 2 из которых могут присоединяться ионы Са 2+ . Остеонектин - кислый белок, богатый цистеином. Показано, что он может ингибировать G 1 -S"-фазу роста эндотелиальных клеток.

    Тенасцин (антиген мышечных сухожилий) - олигомерный гликопротеин, состоящий, подобно фибронектину, из 2 субъединиц, соединённых дисульфидной связью. Эту большую молекулу, похожую на осьминога, называют ещё "гексабрахион", так как она имеет 6 "рук", отходящих радиально от одного участка. Благодаря такому строению, тенасцин может взаимодействовать с большим количеством лигандов, к которым относят различные молекулы межклеточного матрикса.

    Тенасцин обладает как адгезивными, так и антиадгезивными свойствами, синтезируется в различных тканях эмбриона (наиболее интенсивно - в зонах эпителиальномезинхимальных контактов и в развивающейся нервной ткани). В зрелых тканях небольшие количества тенас-цина находятся в сухожилиях и хрящах, его синтез увеличивается в заживающих ранах.

    Тромбоспондин, как и другие белки межклеточного матрикса, может взаимодействовать со многими лигандами: коллагеном, фибронектином, ламинином, протеогликанами, ионами Са 2+ и др. В клетках роговицы глаза и тромбоцитах Тромбоспондин проявляет адгезивные свойства, а в клетках эндотелия и фибробластах он функционирует как антиадгезивный белок.

    Таким образом, функции этих белков определяются их локализацией и окружением.

    101. Молекулярная структура миофибрилл. Структура и функция основных белков миофибрилл миозина, актина, тропомиозина, тропонина.

    К группе миофибриллярных белков относятся миозин, актин и актомиозин – белки, растворимые в солевых средах с высокой ионной силой, и так называемые регуляторные белки: тропомиозин, тропонин, α- и β-актинин, образующие в мышце с актомиозином единый комплекс. Перечисленные миофибриллярные белки тесно связаны с сократительной функцией мышц

    Молекулярная масса миозина скелетных мышц около 500000. Молекула миозина (рис. 20.3) имеет сильно вытянутую форму, длину 150 нм. Она может быть расщеплена без разрыва ковалентных связей на субъединицы: две тяжелые полипептидные цепи с мол. массой 205000–210000 и несколько коротких легких цепей, мол. масса которых около 20000. Тяжелые цепи образуют длинную закрученную α-спираль («хвост» молекулы), конец каждой тяжелой цепи совместно с легкими цепями создает глобулу («головка» молекулы), способную соединяться с актином. Эти «головки» выдаются из основного стержня молекулы. Легкие цепи, находящиеся в «головке» миозиновой молекулы и принимающие участие в проявлении АТФазной активности миозина, гетерогенны по своему составу.

    Строение молекулы миозина

    Актин, составляющий 20% от сухой массы миофибрилл, был открыт Ф. Штраубом в 1942 г. Известны две формы актина: глобулярный актин (G-актин) и фибриллярный актин (F-актин). Молекула G-актина с мол. массой 42000 состоит из одной полипептидной цепочки (глобула), в образовании которой принимают участие 374 аминокислотных остатка. При повышении ионной силы до физиологического уровня G-актин полимеризуется в F-актин (фибриллярная форма). На электронных микрофотографиях волокна F-актина выглядят как две нити бус, закрученных одна вокруг другой (рис. 20.5). Актиомиозин образуется при соединении миозина с F-актином. Актиомиозин, как естественный, так и искусственный, т.е. полученный путем соединения in vitro высокоочищенных препаратов миозина и F-актина, обладает АТФазной активностью, которая отличается от таковой миозина, АТФазная активность миозина значительно возрастает в присутствии стехиометрических количеств F-актина. Фермент актомиозин активируется ионами Mg2+и ингибируется этилендиаминтетраацетатом (ЭДТА) и высокой концентрацией АТФ, тогда как миозиновая АТФаза ингибируется ионами Mg2+, активируется ЭДТА и не ингибируется высокой концентрацией АТФ. Оптимальные значения рН для обоих ферментов также различны. Как отмечалось, кроме рассмотренных основных белков, в миофибриллах содержатся также тропомиозин, тропонин и некоторые другие регуляторные белки.

    Структура тонкого филамента. 1 - актин; 2 - тропомиозин; 3 - тропонин С; 4 - тропонин I; 5 - тропонин Т.

    Тропомиозин был открыт К. Бейли в 1946 г. Молекула тропомиозина состоит из двух α-спиралей и имеет вид стержня длиной 40 нм; его мол. масса 65000. На долю тропомиозина приходится около 4–7% всех белков миофибрилл. Тропонин – глобулярный белок, открытый С. Эбаси в 1963 г.; его мол. масса 80000. В скелетных мышцах взрослых животных и человека тропонин (Тн) составляет лишь около 2% от всех миофибриллярных белков. В его состав входят три субъединицы (Тн-I, Тн-С, Тн-Т). Тн-I (ингибирующий) может ингибировать АТФазную активность, ТН-С (кальцийсвязывающий) обладает значительным сродством к ионам кальция, Тн-Т (тропомиозин-связывающий) обеспечивает связь с тропомиозином.

    Тропонин, соединяясь с тропомиозином, образует комплекс, названный нативным тропомиозином. Этот комплекс прикрепляется к актиновым филаментам и придает актомиозину скелетных мышц позвоночных чувствительность к ионам Са2+ . Установлено, что тропонин (его субъединицы Тн-Т и Тн-I) способен фосфорилироваться при участии цАМФ-зависимых протеинкиназ.

    102. Биохимические механизмы мышечного сокращения и расслабления. Роль ионов кальция и других ионов в регуляции мышечного сокращения. Особенности энергетического обмена в мышцах; роль креатинфосфата.

    Рассмотрим, к чему сводятся представления о механизме попеременного сокращения и расслабления мышц. В настоящее время принято считать, что биохимический цикл мышечного сокращения состоит из 5 стадий (рис. 20.8): 1) миозиновая «головка» может гидролизовать АТФ до АДФ и Н3РО4 (Pi), но не обеспечивает освобождения продуктов гидролиза. Поэтому данный процесс носит скорее стехиометрический, чем каталитический, характер (см. рис. 20.8, а);

    3) это взаимодействие обеспечивает высвобождение АДФ и Н3РО4 из актин-миозинового комплекса. Актомиозиновая связь имеет наименьшую энергию при величине угла 45°, поэтому изменяется угол миозина с осью фибриллы с 90° на 45° (примерно) и происходит продвижение актина (на 10–15 нм) в направлении центра саркомера (см. рис. 20.8, в);

    4) новая молекула АТФ связывается с комплексом миозин–F-актин (см. рис. 20.8, г); Рис. 20.8. Биохимический цикл мышечного сокращения. Объяснение в тексте.

    5) комплекс миозин–АТФ обладает низким сродством к актину, и поэтому происходит отделение миозиновой (АТФ) «головки» от F-актина. Последняя стадия и есть собственно расслабление, которое отчетливо зависит от связывания АТФ с актин-миозиновым комплексом (см. рис. 20.8, д). Затем цикл возобновляется.

    Регуляция сокращения и расслабления мышц . Сокращение любых мышц происходит по общему механизму, описанному ранее. Мышечные волокна разных органов могут обладать различными молекулярными механизмами регуляции сокращения и расслабления, однако всегда ключевая регулятор-ная роль принадлежит ионам Са2+. Установлено, что миофибриллы обладают способностью взаимодействовать с АТФ и сокращаться в его присутствии лишь при наличии в среде определенных концентраций ионов кальция. Наибольшая сократительная активность наблюдается при концентрации ионов Са2+ около 10–6–10–5 М. При понижении концентрации до 10–7 М или ниже мышечные волокна теряют способность к укорочению и развитию напряжения в присутствии АТФ. По современным представлениям, в покоящейся мышце (в миофибрил-лах и межфибриллярном пространстве) концентрация ионов Са2+ поддерживается ниже пороговой величины в результате связывания их структурами (трубочками и пузырьками) саркоплазматической сети и так называемой Т-системой при участии особого Са2+-связывающего белка, получившего название кальсеквестрина, входящего в состав этих структур. Связывание ионов Са2+ разветвленной сетью трубочек и цистерн сарко-плазматической сети не является простой адсорбцией. Это активный физиологический процесс, который осуществляется за счет энергии, освобождающейся при расщеплении АТФ Са2+-зависимой АТФазой саркоплазматической сети. При этом наблюдается весьма своеобразная картина: скорость выкачивания ионов Са2+ из межфибриллярного пространства стимулируется этими же ионами. В целом такой механизм получил название «кальциевая помпа» по аналогии с хорошо известным в физиологии натриевым насосом. Возможность пребывания живой мышцы в расслабленном состоянии при наличии в ней достаточно высокой концентрации АТФ объясняется снижением в результате действия кальциевой помпы концентрации ионов Са2+ в среде, окружающей миофибриллы, ниже того предела, при котором еще возможны проявление АТФазной активности и сократимость акто-миозиновых структур волокна. Быстрое сокращение мышечного волокна при его раздражении от нерва (или электрическим током) является результатом внезапного изменения проницаемости мембран и как следствие выхода из цистерн и трубочек саркоплазматической сети и Т-системы некоторого количества ионов Са2+ в саркоплазму. Как отмечалось, «чувствительность» актомиозиновой системы к ионам Са2+ (т.е. потеря актомиозином способности расщеплять АТФ и сокращаться в присутствии АТФ при снижении концентрации ионов Са2+ до 10–7 М) обусловлена присутствием в контрактильной системе (на нитях F-акти-на) белка тропонина, связанного с тропомиозином. В тропонин-тропомио-зиновом комплексе ионы Са2+ связываются именно с тропонином. В молекуле тропонина при этом происходят конформационные изменения, которые, по-видимому, приводят к сдвигу всего тропонин-тропомиози-нового стержня и деблокировке активных центров актина, способных взаимодействовать с миозином с образованием сократительного комплекса и активной Mg2+-АТФазы. В продвижении актиновых нитей вдоль миозиновых, по данным Э. Хаксли, важную роль играют временно замыкающиеся между нитями поперечные мостики, которые являются «головками» миозиновых молекул. Итак, чем большее число мостиков прикреплено в данный момент к акти-новым нитям, тем больше сила мышечного сокращения. Наконец, если возбуждение прекращается, содержание ионов Са2+ в саркоплазме снижается (кальциевая помпа), то циклы прикрепление–освобождение прекращаются, т.е. «головки» миозиновых нитей перестают прикрепляться к актиновым нитям. В присутствии АТФ мышца расслабляется и ее длина достигает исходной. Если прекращается поступление АТФ (аноксия, отравление дыхательными ядами или смерть), то мышца переходит в состояние окоченения. Почти все поперечные мостики толстых (миозиновых) нитей присоединены при этом к тонким актиновым нитям, следствием чего и является полная неподвижность мышцы.

    Энергетический обмен в мышечной ткани

    103. Химический состав нервной ткани. Миелиновые мембраны: особенности состава и структуры. Энергетический обмен в нервной ткани. Значение аэробного распада глюкозы. Медиаторы нервной системы. Физиологически активные пептиды мозга.

    1. ХИМИЧЕСКИЙ СОСТАВ НЕРВНОЙ ТКАНИ.

    Химический состав нервной ткани сложен и неоднороден, как в целом и сама нервная ткань. Отличия в химическом составе носят в основном количественный характер. В сером веществе 77 -81% воды, в белом-70%. Содержание белков в нервной ткани меньше, чем в некоторых других тканях (печень, мышцы). Их больше в сером веществе и меньше в периферических нервах. В нервной ткани содержится больше сложных белков: ЛИПОПРОТЕИНЫ (миелиновые оболочки), ФОСФОПРОТЕИНЫ, НУКЛЕОПРОТЕИНЫ (ДНП, РНП), ГЛИКОПРОТЕИНЫ (нейрокератин), En.

    Наибольший интерес представляют нейроспецифические белки:

    1. белок S-100 (растворим в 100% растворе (NH4)2SO4). Он повышается в ткани мозга в эксперименте при обучении и эмоциональном воздействии. Считают, что этот белок отвечает за формирование зависимостей (алкогольной, наркотической). ПРОПРОТЕИН - антитело к белку S-100, понижает его содержание в ткани мозга.

    2. Белок 14-3-2 играет важную роль в формировании памяти.

    3. НЕЙРОПЕПТИДЫ - играют роль нейромедиаторов и гормонов. Пептиды памяти, боли, сна. Не белковые азотистые соединения те же самые, что и в других тканях, но отличаются по

    количественному составу. В нервной ткани много свободных аминокислот, г.о. дикарбоновых (ГЛУ, ГЛН, ACП, АСН), ГАМК, ароматические аминокислоты, ЦАМФ и ЦГМФ. Углеводов незначительное количество:

    1. резервные углеводы - гликоген (0,1 %)

    2. глюкоза (1 -4мкмоль/л)

    3. гексозофосфаты

    4. триозофосфаты

    6. молочная кислота.

    ЛИПИДОВ в сером веществе 25%, в белом веществе 50%.

    1. ФОСФОЛИПИДЫ (до 50%) - ПЛАЗМОГЕН АЦЕТАЛЬФОСФАТИДЫ.

    2. ГЛИКОЛИПИДЫ - ЦЕРЕБРОЗИДЫ, ГАНГЛИОЗИДЫ.

    3. ВЖК - в основном непредельные, содержащие по 4 - 5 двойных связей.

    4. Холестерин (25%) в свободном виде. Мозг даже называют депо холестерина.

    5. Нейтральные жиры - в незначительном количестве в головном, но в большом количестве в периферических нервах.

    Минеральные вещества представлены катионами калия, натрия, кальция, магния, железа, меди, цинка, в качестве анионов выступают анионы белков и фосфаты.

    Миелиновая оболочка - электроизолирующая оболочка, покрывающая аксоны многих нейронов. Миелиновую оболочку образуют глиальные клетки: в периферической нервной системе - Шванновские клетки, в центральной нервной системе -олигодендроциты. Миелиновая оболочка формируется из плоского выроста тела глиальной клетки, многократно оборачивающего аксон подобно изоляционной ленте. Цитоплазма в выросте практически отсутствует, в результате чего миелиновая оболочка представляет собой, по сути, множество слоёв клеточной мембраны.

    Миелин прерывается только в области перехватов Ранвье, которые встречаются через правильные промежутки длиной примерно 1 мм. В связи с тем, что ионные токи не могут проходить сквозь миелин, вход и выход ионов осуществляется лишь в области перехватов. Это ведёт к увеличению скорости проведения нервного импульса. Таким образом, по миелинизированным волокнам импульс проводится приблизительно в 5-10 раз быстрее, чем по немиелинизированным.

    Из вышесказанного становится ясным, что миелин и миелиновая оболочка являются синонимами. Обычно термин миелин употребляется в биохимии, вообще при упоминании его молекулярной организации, а миелиновая оболочка - в морфологии и физиологии.

    Химический состав и структура миелина, произведённого разными типами глиальных клеток, различны. Цвет миелинизированных нейронов - белый, отсюда название «белого вещества» мозга.

    Приблизительно на 70-75 % миелин состоит из липидов, на 25-30 % - из белков. Такое высокое содержание липидов отличает миелин от других биологических мембран.

    Склерозы, аутоиммунные заболевания, связанные с разрушением миелиновой оболочки аксонов в некоторых нервах, приводит к нарушению координации и равновесия.

    Энергетический обмен в нервной ткани. Значение аэробного распада глюкозы.

    Головной мозг хорошо снабжается кровью и имеет интенсивный энергетический обмен. Хотя головной мозг составляет около 2% массы тела, при спокойном состоянии организма он утилизирует около 20% поглощенного кислорода и 60% глюкозы, которая полностью окисляется до СО2 и Н2О в цитратном цикле и путем гликолиза. В клетках головного мозга практически единственным источником энергии, который должен поступать постоянно, является глюкоза. Только при продолжительном голодании клетки начинают использовать дополнительный источник энергии - кетоновые тела (см. рис. 305). Запасы гликогена в клетках головного мозга незначительны. Жирные кислоты, которые в плазме крови транспортируются в виде комплекса с альбумином, не достигают клеток головного мозга из-за гематоэнцефалического барьера. Аминокислоты не могут служить источником энергии для синтеза АТФ (АТР), поскольку в нейронах отсутствует глюконеогенез. Зависимость головного мозга от глюкозы означает, что резкое падение уровня глюкозы в крови, например, в случае передозировки инсулина у диабетиков, может стать опасным для жизни. В клетках центральной нервной системы наиболее энергоемким процессом, потребляющим до 40% производимого АТФ, является функционирование транспортной Na+/К+-АТФ-азы (Na+/K+-«насоса») клеточных мембран. Активный транспорт ионов Na+ и К+ компенсирует постоянный поток ионов через ионные каналы. Кроме того, АТФ используется во многих биосинтетических реакциях.

    Ацетилхолин (лат. Acetylcholinum ) - нейромедиатор, осуществляющий нервно-мышечную передачу, а также основной нейромедиатор в парасимпатической нервной системе. Четвертичное аммониевое основание. В организме очень быстро разрушается специализированным ферментом - ацетилхолинэстеразой.

    Ацетилхолину принадлежит также важная роль как медиатор ЦНС. Он участвует в передаче импульсов в разных отделах мозга, при этом малые концентрации облегчают, а большие - тормозят синаптическую передачу. Изменения в обмене ацетилхолина могут привести к нарушению функций мозга. Недостаток его во многом определяет клиническую картину такого опасного нейродегенеративного заболевания, как болезнь Альцгеймера. Некоторыецентральнодействующие антагонисты ацетилхолина (см. Амизил) являются психотропными препаратами (см. также Атропин). Передозировка антагонистов ацетилхолина может вызвать нарушения высшей нервной деятельности (оказывать галлюциногенный эффект и др.).

    Катехоламины - физиологически активные вещества, выполняющие роль химических посредников и «управляющих» молекул (медиаторов и нейрогормонов) в межклеточных взаимодействиях у животных и человека, в том числе в их мозге; производныепирокатехина. К катехоламинам относятся, в частности, такие нейромедиаторы, как адреналин, норадреналин, дофамин (допамин). Адреналин часто, особенно в западной литературе, называют «эпинефрин» (то есть «вещество надпочечников»). Соответственно, норадреналин ча сто называют «норэпинефрин».

    Все высшие формы поведения человека связаны с нормальной жизнедеятельностью катехоламинергических клеток - нервных клеток, синтезирующих катехоламины и использующих их в качестве медиатора. От активности синтеза и выделения катехоламинов зависят такие сложные процессы, как запоминание и воспроизведение информации, сексуальное поведение, агрессивность и поисковая реакция, уровень настроения и активность в жизненной борьбе, скорость мышления, эмоциональность, уровень общего энергетического потенциала и т.д. Чем активнее идет синтез и выделение катехоламинов в количественном отношении, тем выше настроение, общий уровень активности, сексуальность, скорость мышления, да и просто работоспособность. Самый высокий уровень катехоламинов (на единицу массы тела) у детей. Дети отличаются от взрослых прежде всего очень высокой эмоциональностью и подвижностью, способность к быстрому переключению мышления с одного объекта на другой. У детей исключительно хорошая память, всегда хорошее настроение, высокая обучаемость и колоссальная работоспособность. С возрастом синтез катехоламинов как в центральной нервной системе, так и на периферии замедляется. Тому есть разные причины: это и старение клеточных мембран, и исчерпание генетических резервов, и общее снижение синтеза белка в организме. В результате снижения скорость мыслительных процессов, уменьшается эмоциональность, снижается настроение. С возрастом все эти явления усугубляются: снижается эмоциональность, настроение, нередки случаи депрессии. Причина этого в одном - в возрастном снижении синтеза катехоламинов в организме.

    Высокое содержание в нервной системе дофамина усиливает все сексуальные рефлексы и повышает чувствительность клеток к половым гормонам, что способствует высокому анаболизму. Самым высоким содержанием дофамина в ЦНС отличаются подростки. Их настроение носит на себе налет эйфории, а поведение отличается выраженной гиперсексуальностью. Любые тренировки, даже неправильные с методической точки зрения, в подростковом возрасте дают хороший анаболический эффект. Возрастное падение содержания дофамина вызывает возрастную депрессию (снижение настроения), падение сексуальной активности (у мужчин) и замедление скорости анаболических реакций.

    Катехоламины увеличивают нервно-мышечную проводимость, повышают быстроту реакции и скорость мышления. Даже поверхностное знакомство с обменом катехоламинов в организме помогает нам сделать вывод, что катехоламины являются ключевым звеном как в умственной, так и в физической работоспособности, как в скорости, так и в качестве мышления. Творческие способности, способность к абстрактному и художественному мышлению, к анализу и синтезу напрямую зависит от катехоламинового обмена.

    Серотони́н , 5-гидрокситриптамин , 5-НТ - один из основных нейромедиаторов. По химическому строению серотонин относится к биогенным аминам, классу триптаминов.

    Серотонин облегчает двигательную активность, благодаря усилению секреции субстанции Р в окончаниях сенсорных нейронов путем воздействия на ионотропные и метаботропные рецепторы.

    Серотонин наряду с дофамином играет важную роль в механизмах гипоталамической регуляции гормональной функции гипофиза. Стимуляция серотонинергических путей, связывающих гипоталамус с гипофизом, вызывает увеличение секреции пролактина и некоторых других гормонов передней доли гипофиза - действие, противоположное эффектам стимуляции дофаминергических путей.

    Серотонин также участвует в регуляции сосудистого тонуса.

    γ-Аминомасляная кислота ,ГАМК, - аминокислота, важнейший тормозной нейромедиатор центральной нервной системы человека и млекопитающих.

    γ-Аминомасляная кислота выполняет в организме функцию ингибирующего медиатора центральной нервной системы. Лиганды рецепторов ГАМК рассматриваются как потенциальные средства для лечения различных расстройств психики и центральной нервной системы, к которым относятся болезни Паркинсона и Альцгеймера, расстройства сна (бессонница, нарколепсия), эпилепсия.

    Под влиянием ГАМК активируются также энергетические процессы мозга, повышается дыхательная активность тканей, улучшается утилизация мозгом глюкозы, улучшается кровоснабжение.

    Глицин также является нейромедиаторной аминокислотой, проявляющей двоякое действие. Глициновые рецепторы имеются во многих участках головного мозга и спинного мозга. Связываясь с рецепторами, глицин вызывает «тормозящее» воздействие на нейроны, уменьшают выделение из нейронов «возбуждающих» аминокислот, таких как глутаминовая кислота, и повышают выделение ГАМК. Также глицин связывается со специфическими участками NMDA-рецепторов и, таким образом, способствует передаче сигнала от возбуждающих нейротрансмиттеров глутамата и аспартата. В спинном мозге глицин приводит к торможению мотонейронов, что позволяет использовать глицин в неврологической практике для устранения повышенного мышечного тонуса.

    Глутамат - наиболее распространенный возбуждающий нейротрансмиттер в нервной системе позвоночных. глутамат вовлечен в такие когнитивные функции, как обучение и память

    Гистамин является одним из эндогенных факторов (медиаторов), участвующих в регуляции жизненно важных функций организма и играющих важную роль в патогенезе ряда болезненных состояний.

    В обычных условиях гистамин находится в организме преимущественно в связанном, неактивном состоянии. При различных патологических процессах (анафилактический шок, ожоги, обморожения, сенная лихорадка, крапивница и аллергические заболевания), а также при поступлении в организм некоторых химических веществ количество свободного гистамина увеличивается.

    Свободный гистамин обладает высокой активностью: он вызывает спазм гладких мышц (включая мышцы бронхов), расширение капилляров и понижение артериального давления; застой крови в капиллярах и увеличение проницаемости их стенок; вызывает отёк окружающих тканей и сгущение крови..

    Некоторые количества гистамина содержатся в ЦНС, где, как предполагают, он играет роль нейромедиатора (или нейромодулятора). Не исключено, что седативноедействие некоторых липофильных антагонистов гистамина (проникающих через гематоэнцефалический барьер противогистаминных препаратов, например,димедрола) связано с их блокирующим влиянием на центральные гистаминовые рецепторы.

    Природа

    Действие

    мет-Энкефалин

    5 остатков аминокислот

    Кратковременное обезболивающее действие

    β-эндорфин

    30 остатков АК

      Морфиноподобные эффекты:

      обезболивание,

      возникновения чувства удовлетворения.

      снижение других эмоций.

    Важный периферический эффект:

    • мощная стимуляция NK-клеток

    γ-эндорфины

    Первые 17 остатков β-эндорфина

    Нейролептическое действие (торможение эмоциональной сферы).

    Обезболивающий эффект выражен слабо.

    α-эндорфин

    Первые 16 остатков β-эндорфина

    Психостимулирующее:

      стимуляция эмоций,

      увеличение моторной активности

    Природа

    Действие

    Вазопрессин

    Циклические нонапептиды

    Способствует формированию долгосрочной памяти

    Окситоцин

    Циклические нонапептиды

    Умеренно препятствует формированию долгосрочной памяти

    Холецисто-кинин-8

    Декапептид

    Очень мощный ингибитор пищедобывательного поведения

    Нейротензин

    13 остатков АК

    Подобно анальгину, вызывает эффекты: обезболивающий (не через опиатные рецепторы),

    гипотермический и гипотензивный

    Эндозепин-6

    Гексапептид

    Ингибирует ГАМКА - рецепторы. Вызывает беспокойство и проконфликтное поведение

    Пептид дельта сна

    Не входит ни в одно из 18 семейств

    Сильный снотворный эффект, облегчение стрессовых состояний

    Структура коллагеновых фибрилл постепенно изменяется. Увеличивается число водородных и эфирных связей между тропоколлагеновыми молекулами, утолщаются фибриллы (диаметр их увеличивается с 500 на 600 А), за счет этого уменьшается относительная доля основного вещества. Подобен этому механизм поражения клапанного аппарата сердца в ходе развития ревматизма.

    Если в молодом детском организме соотношение гексозамин/оксипролин смещено в пользу гексозамина, то с возрастом это соотношение постепенно изменяется в обратном направлении.

    Уменьшается скрепляющее основное вещество, а взамен этого сгущаются коллагеновые волокна, изменяется соотношение между ретикулиновыми и коллагеновыми волокнами.

    Все это приводит к существенным изменениям реологических свойств соединительной ткани.

    Относительно больший процент фибробластов в СТ, т. е. биологически активных элементов в ОВ детского и подрастающего организмов, определяет более интенсивный обмен, а в то же время и более легкую ранимость под влиянием различных вредных агентов.

    «Ревматизм в детском возрасте», Стефан Коларов

    Расположение пролина в первичной структуре коллагена определяется ДНК и соответственно передается из информационной РНК. Пока еще процесс образования гидроксипролина не вполне выяснен. Внутриклеточно синтезированные полипептиды созревают вне клетки и образуют коллагеновые фибриллы и волокна. Однако поперечная изчерченность коллагена видна уже на этапе образования их внутри клеток. В процессе своего обособления коллаген проходит через следующие этапы:…

    Плазминоген-активаторы активируют плазминоген, превращая его в плазмин. Следует подчеркнуть, что протеолитическое действие плазмина не распространяется только на фибриноген и фибрин, но и на ряд других белков. Принимаемая в прошлом, специфичность обусловлена более быстрым расщеплением фибриногена. Предполагают, что плазминоген активируется данной пептидазой, расщепляющей несколько пептидных связей. Наличие тканевых фибринокиназ доказано в ряде органов и тканей —…

    Структурные элементы коллагенового вещества Созданная таким образом, нерастворимая коллагеновая фибрилла является основной составной единицей коллагена. Первичная структура коллагена (последовательность аминокислот в белковой молекуле) определяется, прежде всего, часто повторяющимся трипептидом глицил-пролил-гидроксипролином, обладающим определяющим значением и для вторичной и третичной структур. Вторичная структура коллаген обусловливается пространственным расположением составных 1000 аминокислот, которые придают полипептидной цепочке характер спирали. Две…

    Мостовые связи, повышающие устойчивость коллагеновых фибрилл Обозначения: а — внутрицепные и внутримолекулярные, обеспечивающие продольную связь; б — межцепные и внутримолекулярные, обеспечивающие поперечную связь; в — межцепные, межмолекулярные, обеспечивающие поперечную связь. Характерной особенностью является расположение глициновых остатков в боковых цепочках внутри коллагеновой молекулы, также как и пролиновых, оксипролиновых и других остатков аминокислот на ее внешней стороне….

    Структурная схема коллагенового волокна (по Reed) В сущности последовательность распределения молекул при образовании фибрилл обусловливается, в конечном счете, последовательностью щелочных (основных) и кислых аминокислот в коллагеновой молекуле, т. е. в ее первичной структуре. Объединение отдельных фибрилл в более крупные пучки до обособления коллагеновых волокон, вероятно, осуществляется при участии кислых мукополисахаридов (глюкозами ногликанов). Образование коллагена проходит…

    
    Top