Момент инерции. Определение момента инерции Что такое момент инерции

Момент инерции - это мера инертности тела относительно оси при вращательном движении (реальном или воображаемом) вокруг этой оси3. Момент инерции количественно равен сумме моментов инерции частиц тела - произведений масс частиц на квадраты их расстояний от оси вращения: J=Smr 2

Когда частицы тела находятся дальше от оси вращения, то угловое ускорение тела под действием того же момента силы меньше ; если частицы ближе к оси, то угловое ускоре­ние больше . Значит, если приблизить тело (все в целом или его части) к оси, то легче вызвать угловое ускорение, легче разогнать тело во вращении, легче и остановить его. Этим пользуются при движении вокруг оси.

Найдя опытным путем момент инерции тела, можно рассчитать радиус инерции, на величине которого отражается рас­пределение частиц в теле относительно данной оси.

Радиус инерции - это сравнительная мера инертности данного тела относительно его разных осей. Он измеряется корнем квад­ратным из отношения момента инерции относительно данной оси

к массе тела:R=ÖJ/m

Количественное определение моментов инерции в биомеханике не всегда достаточно точно. Но для понимания физических основ дви­женийчеловека учитывать эту характеристику необходимо.

СИЛОВЫЕ ХАРАКТЕРИСТИКИ

Сила

Сила - это мера механического воздействия одного тела на дру­гое. Численно она определяется произведением массы тела на его ускорение, вызванное приложением этой силы: F=ma;

Таким образом, измерение силы, как и измерение массы, основано на 2-м законе Ньютона. Поскольку этот закон раскрывает зависимости в поступательном движении, то и сила как вектор определяется только в случае такого простейшего вида движения по массе и ускорению,

Источники сил. Уже указывалось, что ускорение зависит от систе­мы отсчета. Поэтому и сила, определяемая по ускорению, тоже зависит от системы отсчета. В инерциальной системе отсчета источником силы для данного тела всегда слу­жит другое материальное тело. Коль скоро взаимо­действуют два материальных объекта, то в этих условиях проявляется 3-й закон Ньютона3.

Если на одно тело действует другое тело, то оно изменяет движение первого. Но и первое тело в этом взаимодействии также изменяет дви­жение другого. Обе силы приложены к разным объектам, каждая про­являет соответствующий эффект. Их нельзя заменить одной равнодей­ствующей, поскольку они приложены к разным объектам. Именно по­этому они друг друга и не уравновешивают.

В неинерциальной системе отсчета рассматривают кроме взаи­модействий двух тел еще особые силы инерции («фиктивные»), для ко­торых 3-й закон Ньютона не применим.

Измерение сил . Применяется статическое измерение силы, т. е. измерение при помощи уравновешивающей силы (когда ускорение равно нулю), и динамическое - по ускорению, сообщаемому телу ее приложе­нием.

При статическом действии силы на данное тело (М) действуют два тела (А и В); всего имеется три материальных объекта (рис. 23, а). Силы F а и f в, приложенные к телу М, равны по величине и противоположны по направлению, они взаимно уравновешиваются. Их равнодействующая равна нулю. Ускорение, вызванное ими, также равно нулю. Скорость не изменяется (остается постоянной - равно­мерное движение или отно­сительная неподвижность).

Силу fa, дейст­вующую статиче­ски, можно изме­рить уравновеши­вающей ее силой f в.

Рассмотрим три случая про­явления статического действия силы, когда все тела неподвижны -

а)гимнаст в висе на перекладине; опорная реакция уравновешивает силу тяжести тела (G);

б) уравновешенное тело движется перпендикулярно уравновешенной силе тяжести - конькобежец скользит по льду; опорная реакция уравновешивает силу тяжести тела (G); последняя прямо не влияет на скорость скольжения;

в) уравновешенное тело по инерции движется по направлению дей­ствия уравновешенной силы; горнолыжник скользит с постоянной скоростью по склону; силы сопротивления (воздуха и трения лыж по снегу - Q) уравновешивают скатывающую составляющую силы тяжести (G). Во всех трех случаях вне зависимости от состояния покоя или направления движения тела урав­новешенная сила не изменяет движения; скорости в направлении ее действия по­стоянны.

Следует подчеркнуть, что во всех случаях статическое действие силы вызывает деформацию тела.

При динамическом действии силы на данное тело М действует неуравновешенная сила. В задачах по теоретической меха­нике часто рассматривается лишь эта одна движущая сила, как мера действия лишь одного движущего тела.

Движущая сила - это сила, которая совпа­дает с направлением движения (попутная) или образует с ним острый угол и при этом может совершать положительную работу (увеличивать энергию тела).

Однако в реальных условиях движений человека всегда сущест­вует среда (воздух или вода), действуют опора и другие внешние тела (снаряды, инвентарь, партнеры, противники и др.). Все они могут оказывать тормозящее действие. Более того, ни одного реального дви­жения без участия тормозя­щих сил просто не бывает.

Тормозящая сила на­правлена противопо­ложно направлению движения (встречная) или образует с ним тупой угол. Она может совер­шать отрицательную работу (уменьшать энергию тела).

Часть движущей силы, равная по величине тормозящей уравновешивает последнюю - это уравновешивающая сила (Fyp).

Избыток же движущей силы над тормозящей - ускоряющая сила (Fуск) - вызывает ус­корение тела с массой m согласно 2-му закону Ньютона (Fy=ma).

Следовательно, скорость не остается постоянной, а изменяется, т. е. возникает ускорение. Это и есть динамическое дейст­вие силы F.

Силу F уск, действующую динамически, мож­но измерить по массе тела и его ускорению.

Классификация сил. Силы, которые, изучают при анализе движений человека, в зависимости от общих признаков делятся на группы. По способу взаимодействия тел все силы делятся на д и с т а н т н ы е, возникающие на расстоянии без непосредственного соприкосновения тел, и контактные, которые возникают лишь при соприкосновении тел.

К дистантным силам в механике относят силы всемирного тяготе­ния, из которых в биомеханике изучаются силы земного тяготения, проявляющиеся в силах тяжести . Контактные силы включают упругие силы и силы трения .

По влиянию на движение различают силы а к т и в н ы е (или задаваемые) и реакции связи . Напоминаем, что связи -это огра­ничения движения объекта, осуществляемые другими телами . Сила, с которой связь противодействует движению, и представляет собою реакцию связи. Она заранее неизвестна и зависит от действия на тело других сил и движения самого тела.

Реакции связи сами по себе не вызывают движения, они только противодействуют активным силам или уравновешивают их. Если же реакции связи не уравновешивают активных сил, тогда и начинается движение под действием последних.

По источнику возникновения относительно системы (например, тела человека) силы различают в н е ш н и е, вызванные действием тел внешних относительно системы, и внутренние, вызванные взаи­модействиями внутри системы. Это деление необходимо при определе­нии возможностей действия тех или иных сил. Одну и ту же силу сле­дует считать внешней или внутренней в зависимости от того, относи­тельно какого объекта мы ее рассматри­ваем.

По способу приложениясилы в меха­нике делят на сосредоточенные , приложенные к телу в одной точке, и распределенные . Последние делят на поверхностные и объемные.

По характеру силы бываютпостоянные и переменные. В качестве примера постоянной силы можно назвать силу тяжести (в данном пункте Земли). Одна и та же сила может изменяться в зависи­мости от нескольких условий. Практически в движении человека по­стоянные силы почти не встречаются. Все силы переменные. Они меняют­ся в зависимости от времени (мышца с течением времени изменяет си­лу тяги), расстояния (в разных пунктах Земли даже «постоянная сила» тяжести различна), скорости (сопротивление среды зависит от относи­тельной скорости тела и среды).

Поскольку в биомеханике особенно важно взаимодействие тела человека с внешним окружением, вызываемое движениями частей те­ла, далее будут подробно рассмотрены силы внешние и внутренние относительно системы (тела человека). Взаимодействие физических объектов - главная причина изменения движений. Поэтому мере взаимодействия - силе - в биомеханике уделяетсяособое вни­мание.

Момент силы

Момент силы - это мера механического воздействия, способ­ного поворачивать тело (мера вращающего действия силы). Он численно определяется произведением модуля силы на ее плечо (расстояние от центра момента1 до линии действия силы):

Момент силы имеет знак плюс, если сила сообщает вращение про­тив часовой стрелки, и минус при обратном его направлении.

Вращающая способность силы проявляет­ся в создании, изменении или прекращении вращательного движения.

Полярный момент силы (момент силы относительно точки) может быть определен для любой силы относительно этой точки (О) (центр момента). Если расстояние от линии действия силы до избранной точки равно нулю, то и момент силы равен нулю. Сле­довательно, расположенная таким образом сила не обладает вращаю­щей способностью относительно этого центра. Площадь прямоуголь­ника (Fd) численно равна модулю момента силы.

Когда несколько моментов силы приложено к одному телу, их мож­но привести к одному моменту - главному моменту.

Для определения вектора момен­та силы1 надо знать: а) м о д у л ь момента (произведение модуля силы на ее плечо); б) плос­кость поворота (проходит через линию действия силы и центр момента) и в)направление поворота в этой плоскости.

Осевой момент силы (моментсилы относительно оси) может быть определен для любой силы, кроме совпадающей с осью, ей параллельной или ее пересекающей. Иначе говоря, сила и ось не должны лежать в одной плоскости.

Применяют статическое измерение моментасилы,если его уравновешивает лежащий в той же плоскости равный ему по модулю и противоположный по направлению момент другой силы отно­сительно того же центра момента (например, при равновесии рычага). Моменты сил тяжести звеньев относительно их проксимальных суста­вов называют статическими моментами звеньев .

Применяют динамическое измерение момента силы, если известны момент инерции тела относительно оси вращения и его угловое ускорение. Как и силы, моменты сил относительно центра мо­гут быть движущими и тормозящими , а стало быть, и уравновешивающими, ускоряющими и замедляю­щими . Момент силы может быть и отклоняющим - откло­няет в пространстве плоскость поворота.

При всех ускорениях возникают силы инерции: при нормальных ус­корениях - центробежные силы инерции, при касательных ускорениях (положительных или отрицательных) - касательные силы инерции. Центробежная сила инерции направлена по радиусу вращения и не имеет момента относительно центра вращения. Касательная же сила инерции приложена для твердого звена в центре его качаний. Таким образом, имеется момент силы инерции относительно оси вращения.

Действие силы

ФИЗИЧЕСКОГО МАЯТНИКА

Цель работы : определить момент инерции физического маятника в виде стержня с грузами по периоду собственных колебаний.

Оборудование : маятник, секундомер.

ТЕОРЕТИЧЕСКОЕ ВВЕДЕНИЕ

Момент инерции твердого тела – это мера инертности тела при его вращательном движении. В этом смысле он является аналогом массы тела, которая является мерой инертности тела при поступательном движении. Согласно определению, момент инерции тела равен сумме произведений масс частиц тела m i на квадраты их расстояний до оси вращения r i 2:

, или .(1)

Момент инерции зависит не только от массы, но и от ее распределения относительно оси вращения. Как видно, инертность при вращении тела тем больше, чем дальше от оси расположены частицы тела.

Существуют различные экспериментальные методы определения момента инерции тел. В работе предлагается метод определения момента инерции по периоду собственных колебаний исследуемого тела как физического маятника. Физический маятник – это тело произвольной формы, точка подвеса которого расположена выше центра тяжести. Если в поле тяжести маятник отклонить от положения равновесия и отпустить, то под действием силы тяжести маятник стремится к положению равновесия, но, достигнув его, по инерции продолжает движение и отклоняется в противоположную сторону. Затем процесс движения повторяется в обратном направлении. В итоге маятник будет совершать вращательные собственные колебания.

Для вывода формулы момента инерции маятника через период собственных колебаний применим основной закон динамики вращательного движения : угловое ускорение тела прямо пропорционально моменту силы и обратно пропорционально моменту инерции тела относительно оси вращения:



Момент силы по определению равен произведению силы на плечо силы. Плечо силы – это перпендикуляр, опущенный из оси вращения на линию действия силы. Для маятника (рис. 1а) плечо силы тяжести равно d = а sina, где а – расстояние между осью вращения и центром масс маятника. При малых колебаниях маятника угол отклонения a сравнительно мал, а синусы малых углов с достаточной точностью равны самим углам. Тогда момент силы тяжести можно определить по формуле М = −mgа∙a . Знак минус обусловлен тем, что момент силы тяжести противодействует отклонению маятника.

Так как угловое ускорение – это вторая производная от угла поворота по времени, то основной закон динамики вращательного движения (1) принимает вид

. (3)

Это дифференциальное уравнение второго порядка. Его решением должна быть функция, превращающая при подстановке уравнение в тождество. Как видно из уравнения (3), для этого функция решения и ее вторая производная должны иметь одинаковый вид. В математике такой функцией может быть функция косинуса, синуса

a = a 0 sin(w t + j ), (4)

при условии, если циклическая частота равна . Циклическая частота связана с периодом колебаний , то есть временем одного колебания, соотношением T = 2p /w. Отсюда

Период колебаний Т и расстояние от оси вращения до центра тяжестимаятника а измерить можно. Тогда из (5) момент инерции маятника относительно оси вращения С может быть определен экспериментально по формуле

. (6)

Маятник, момент инерции которого определяется в работе, представляет собой стержень с надетыми на него двумя дисками. Теоретически момент инерции маятника можно определить как сумму моментов инерции отдельных частей. Момент инерции дисков можно рассчитать по формуле момента инерции материальной точки, так как они невелики по сравнению с расстоянием до оси вращения: , . Момент инерции стержня относительно оси, находящейся на расстоянии b от середины стержня, можно определить по теореме Штейнера . В итоге суммарный момент инерции маятника можно теоретически рассчитать по формуле

. (7)

Здесь m 1 , m 2 и m 0 – массы первого, второго дисков и стержня, l 1 , l 2 – расстояния от середин дисков до оси вращения, l 0 – длина стержня.

Расстояние от точки подвеса до центра тяжести маятника а , необходимое для экспериментального определения момента инерции в формуле (6), можно определить, используя понятие центра тяжести. Центр тяжести тела – это точка, к которой приложена равнодействующая сила тяжести. Поэтому если маятник положить горизонтально на опору, расположенную под центром тяжести, то маятник будет в равновесии. Затем достаточно измерить расстояние от оси С до опоры.

Но можно определить расстояние а расчетом. Из условия равновесия маятника на опоре (рис. 1б) следует, что момент результирующей силы тяжести относительно оси С (m 1 +m 2 + m 0)равен сумме моментов сил тяжести грузов и стержня m 1 gl 1 + m 2 gl 2 + m 0 gb . Откуда получим

. (8)

ВЫПОЛНЕНИЕ РАБОТЫ

1. Взвешиванием на весах определить массы дисков и стержня. Расположить на стержне и закрепить диски. Измерить расстояния от оси вращения до середин дисков l 1 , l 2 и до середины стержня b , длину стержня l 0 по сантиметровым делениям на стержне. Результаты измерений записать в табл. 1.

Таблица 1

2.Включить электронный блок в сеть 220 В.

Измерить период колебаний. Для этого отвести маятник от положения равновесия на небольшой угол и отпустить. Нажать кнопку Пуск секундомера. Чтобы измерить время t , например, десяти колебаний, следует после девятого колебания нажать кнопку Стоп. Период равен
Т = t/ 10. Записать результат в табл. 2, нажать кнопку Сброс . Опыт повторить не менее трех раз при других углах отклонения маятника.

Выключить установку.

4. Произвести расчеты в системе СИ. Определить среднее значение <Т > периода колебаний. Определить расстояние а от оси до центра тяжести маятника по формуле (8), или положить маятник на опору так, чтобы он находился в равновесии, и по делениям на стержне измерить расстояние а .

а , м Т 1 , с Т 2 , с Т 3 , с <T >,с , кг∙м 2 J теор, кг∙м 2

Таблица 2

5. Определить среднее экспериментальное значение момента инерции маятника <J экс > по формуле (6) по среднему значению периода колебаний <T >.

6. Определить теоретическое значение момента инерции маятника J теор по формуле (7).

7. Сделать вывод, сравнив теоретическое и экспериментальное значения момента инерции маятника. Оценить погрешность измерения D J = – J теор .

8. Записать результат в виде J эксп = < J > ±D J .

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Дайте определение физического маятника, объясните, почему возможны собственные колебания маятника.

2. Запишите основной закон динамики вращательного движения для физического маятника.

Чтобы изменить скорость перемещения тела в пространстве, необходимо приложить некоторое усилие. Этот факт относится ко всем видам механического движения и связан с наличием инерционных свойств у объектов, имеющих массу. В данной статье рассматривается вращение тел и дается понятие об их моменте инерции.

Что такое вращение с точки зрения физики?

Ответ на этот вопрос может дать каждый человек, поскольку этот физический процесс ничем не отличается от его понятия в обиходе. Процесс вращения представляет собой перемещение объекта, обладающего конечной массой, по круговой траектории вокруг некоторой воображаемой оси. Можно привести следующие примеры вращения:

  • Движение колеса автомобиля или велосипеда.
  • Вращение лопастей вертолета или вентилятора.
  • Движение нашей планеты вокруг оси и вокруг Солнца.

Какие физические величины характеризуют процесс вращения?

Перемещение по окружности описывается набором величин в физике, основные из которых перечислены ниже:

  • r - расстояние до оси материальной точки массой m.
  • ω и α - угловая скорость и ускорение, соответственно. Первая величина показывает, на сколько радиан (градусов) поворачивается тело вокруг оси за одну секунду, вторая величина описывает скорость изменения во времени первой.
  • L - момент импульса, который подобен аналогичной характеристике при линейном движении.
  • I - момент инерции тела. Эта величина рассматривается ниже в статье подробно.
  • M - момент силы. Он характеризует степень изменения величины L, если приложена внешняя сила.

Перечисленные величины связаны друг с другом следующими формулами вращательного движения:

Первая формула описывает круговое движение тела в отсутствие действия внешних моментов сил. В приведенном виде она отражает закон сохранения момента импульса L. Второе выражение описывает случай ускорения или замедления вращения тела в результате действия момента силы M. Оба выражения часто используются при решении задач динамики по круговой траектории.

Как видно из этих формул, момент инерции относительно оси (I) в них используется в качестве некоторого коэффициента. Рассмотрим подробнее эту величину.

Откуда появляется величина I?

В этом пункте рассмотрим самый простой пример вращения: круговое перемещение материальной точки массой m, дистанция которой от оси вращения составляет r. Эта ситуация приведена на рисунке.

Согласно определению, момент импульса L записывается, как произведение плеча r на линейный импульс p точки:

L = r*p = r*m*v, поскольку p = m*v

Учитывая, что линейная и угловая скорость связаны друг с другом через расстояние r, это равенство можно переписать так:

v = ω*r => L = m*r 2 *ω

Произведение массы материальной точки на квадрат расстояния до оси вращения принято называть моментом инерции. Формула выше перепишется в таком случае следующим образом:

То есть мы получили выражение, которое было приведено в предыдущем пункте, и ввели в использование величину I.

Общая формула для величины I тела

Выражение для момента инерции массой m материальной точки является базовым, то есть оно позволяет рассчитать эту величину для любого тела, имеющего произвольную форму и неоднородное распределение массы в нем. Для этого необходимо разбить рассматриваемый объект на маленькие элементы массой m i (целое число i - номер элемента), затем, умножить каждый из них на квадрат расстояния r i 2 до оси, вокруг которой рассматривают вращение, и сложить полученные результаты. Описанную методику нахождения величины I можно записать математически так:

I = ∑ i (m i *r i 2)

Если тело разбито таким образом, что i->∞, тогда приведенная сумма заменяется интегралом по массе тела m:

Этот интеграл эквивалентен другому интегралу по объему тела V, поскольку dV=ρ*dm:

I = ρ*∫ V (r i 2 *dV)

Все три формулы используются для вычисления момента инерции тела. При этом в случае дискретного распределения масс в системе предпочтительнее пользоваться 1-м выражением. При непрерывном распределении массы применяют 3-е выражение.

Свойства величины I и ее физический смысл

Описанная процедура получения общего выражения для I позволяет сделать некоторые выводы о свойствах этой физической величины:

  • она является аддитивной, то есть полный момент инерции системы можно представить, как сумму моментов отдельных ее частей;
  • она зависит от распределения массы внутри системы, а также от расстояния до оси вращения, чем больше последнее, тем больше I;
  • она не зависит от действующих на систему моментов сил M и от скорости вращения ω.

Физический смысл I заключается в том, насколько сильно система препятствует любому изменению скорости ее вращения, то есть момент инерции характеризует степень "плавности" возникающих ускорений. Например, колесо велосипеда можно легко раскрутить до больших угловых скоростей и также легко его остановить, но чтобы изменить вращение маховика на коленвале автомобиля, понадобится приложить значительное усилие и некоторое время. В первом случае имеет место система с маленьким моментом инерции, во втором - с большим.

Значение I некоторых тел для оси вращения, проходящей через центр масс

Если применить интегрирование по объему для любых тел с произвольным распределением массы, то можно получить для них величину I. В случае однородных объектов, которые имеют идеальную геометрическую форму, эта задача уже решена. Ниже приводятся формулы момента инерции для стержня, диска и шара массой m, в которых составляющее их вещество распределено равномерно:

  • Стержень. Ось вращения проходит перпендикулярно ему. I = m*L 2 /12, где L - длина стержня.
  • Диск произвольной толщины. Момент инерции с осью вращения, проходящей перпендикулярно его плоскости через центр масс, вычисляется так: I = m*R 2 /2, где R - радиус диска.
  • Шар. В виду высокой симметрии этой фигуры, для любого положения оси, проходящей через ее центр, I = 2/5*m*R 2 , здесь R - шара радиус.

Задача на расчет значения I для системы с дискретным распределением массы

Представим себе стержень длиною 0,5 метра, который сделан из твердого и легкого материала. Этот стержень закреплен на оси таким образом, что она проходит перпендикулярно ему точно посередине. На этот стержень подвешены 3-и груза следующим образом: с одной стороны оси имеются два груза массами 2 кг и 3 кг, находящиеся на расстояниях 10 см и 20 см от его конца, соответственно; с другой стороны подвешен один груз массой 1,5 кг к концу стержня. Для этой системы необходимо рассчитать момент инерции I и определить, с какой скоростью ω стержень будет вращаться, если к одному из его концов приложить силу 50 Н в течение 10 секунд.

Поскольку массой стержня можно пренебречь, тогда необходимо рассчитать момент I для каждого груза и сложить полученные результаты, чтобы получить полный момент системы. Согласно условию задачи от оси груз массой 2 кг находится на расстоянии 0,15 м (0,25-0,1), груз 3 кг - 0,05 м (0,25-0,20), груз 1,5 кг - 0,25 м. Воспользовавшись формулой для момента I материальной точки, получаем:

I = I 1 +I 2 +I 3 = m 1 *r 1 2 + m 2 *r 2 2 + m 3 *r 3 2 = 2*(0,15) 2 +3*(0,05) 2 +1,5*(0,25) 2 = 0,14 625 кг*м 2 .

Обратим внимание, что при выполнении вычислений все единицы измерения были переведены в систему СИ.

Чтобы определить угловую скорость вращения стержня после действия силы, следует применить формулу с моментом силы, которая была приведена во втором пункте статьи:

Поскольку α = Δω/Δt и M = r*F, где r - длина плеча, получаем:

r*F = I*Δω/Δt => Δω = r*F*Δt/I

Учитывая, что r = 0,25 м, подставляем числа в формулу, получаем:

Δω = r*F*Δt/I = 0,25*50*10/0,14625 = 854,7 рад/с

Полученная величина является достаточно большой. Чтобы получить привычную частоту вращения, следует поделить Δω на 2*pi радиан:

f = Δω/(2*pi) = 854,7/(2*3,1416) = 136 с -1

Таким образом, приложенная сила F к концу стержня с грузами за 10 секунд раскрутит его до частоты 136 оборотов в секунду.

Расчет значения I для стержня, когда ось проходит через его конец

Пусть имеется однородный стержень массой m и длиной L. Необходимо определить момент инерции, если ось вращения расположена на конце стержня перпендикулярно ему.

Воспользуемся общим выражением для I:

I = ρ*∫ V (r i 2 *dV)

Разбивая рассматриваемый объект на элементарные объемы, заметим, что dV может быть записано, как dr*S, где S - площадь сечения стержня, а dr - толщина элемента разбиения. Подставляя это выражение в формулу, имеем:

I = ρ*S*∫ L (r 2 *dr)

Этот интеграл вычислить достаточно просто, получаем:

I = ρ*S* (r 3 /3)∣ 0 L => I = ρ*S*L 3 /3

Поскольку объем стержня равен S*L, а масса - ρ*S*L, то получаем конечную формулу:

Любопытно отметить, что момент инерции для того же стержня, когда ось проходит через его центр масс, в 4 раза меньше полученной величины (m*L 2 /3/(m*L 2 /12)=4).

English: Wikipedia is making the site more secure. You are using an old web browser that will not be able to connect to Wikipedia in the future. Please update your device or contact your IT administrator.

中文: 维基百科正在使网站更加安全。您正在使用旧的浏览器,这在将来无法连接维基百科。请更新您的设备或联络您的IT管理员。以下提供更长,更具技术性的更新(仅英语)。

Español: Wikipedia está haciendo el sitio más seguro. Usted está utilizando un navegador web viejo que no será capaz de conectarse a Wikipedia en el futuro. Actualice su dispositivo o contacte a su administrador informático. Más abajo hay una actualización más larga y más técnica en inglés.

ﺎﻠﻋﺮﺒﻳﺓ: ويكيبيديا تسعى لتأمين الموقع أكثر من ذي قبل. أنت تستخدم متصفح وب قديم لن يتمكن من الاتصال بموقع ويكيبيديا في المستقبل. يرجى تحديث جهازك أو الاتصال بغداري تقنية المعلومات الخاص بك. يوجد تحديث فني أطول ومغرق في التقنية باللغة الإنجليزية تاليا.

Français: Wikipédia va bientôt augmenter la sécurité de son site. Vous utilisez actuellement un navigateur web ancien, qui ne pourra plus se connecter à Wikipédia lorsque ce sera fait. Merci de mettre à jour votre appareil ou de contacter votre administrateur informatique à cette fin. Des informations supplémentaires plus techniques et en anglais sont disponibles ci-dessous.

日本語: ウィキペディアではサイトのセキュリティを高めています。ご利用のブラウザはバージョンが古く、今後、ウィキペディアに接続できなくなる可能性があります。デバイスを更新するか、IT管理者にご相談ください。技術面の詳しい更新情報は以下に英語で提供しています。

Deutsch: Wikipedia erhöht die Sicherheit der Webseite. Du benutzt einen alten Webbrowser, der in Zukunft nicht mehr auf Wikipedia zugreifen können wird. Bitte aktualisiere dein Gerät oder sprich deinen IT-Administrator an. Ausführlichere (und technisch detailliertere) Hinweise findest Du unten in englischer Sprache.

Italiano: Wikipedia sta rendendo il sito più sicuro. Stai usando un browser web che non sarà in grado di connettersi a Wikipedia in futuro. Per favore, aggiorna il tuo dispositivo o contatta il tuo amministratore informatico. Più in basso è disponibile un aggiornamento più dettagliato e tecnico in inglese.

Magyar: Biztonságosabb lesz a Wikipédia. A böngésző, amit használsz, nem lesz képes kapcsolódni a jövőben. Használj modernebb szoftvert vagy jelezd a problémát a rendszergazdádnak. Alább olvashatod a részletesebb magyarázatot (angolul).

Svenska: Wikipedia gör sidan mer säker. Du använder en äldre webbläsare som inte kommer att kunna läsa Wikipedia i framtiden. Uppdatera din enhet eller kontakta din IT-administratör. Det finns en längre och mer teknisk förklaring på engelska längre ned.

हिन्दी: विकिपीडिया साइट को और अधिक सुरक्षित बना रहा है। आप एक पुराने वेब ब्राउज़र का उपयोग कर रहे हैं जो भविष्य में विकिपीडिया से कनेक्ट नहीं हो पाएगा। कृपया अपना डिवाइस अपडेट करें या अपने आईटी व्यवस्थापक से संपर्क करें। नीचे अंग्रेजी में एक लंबा और अधिक तकनीकी अद्यतन है।

We are removing support for insecure TLS protocol versions, specifically TLSv1.0 and TLSv1.1, which your browser software relies on to connect to our sites. This is usually caused by outdated browsers, or older Android smartphones. Or it could be interference from corporate or personal "Web Security" software, which actually downgrades connection security.

You must upgrade your web browser or otherwise fix this issue to access our sites. This message will remain until Jan 1, 2020. After that date, your browser will not be able to establish a connection to our servers.

МОМЕНТОМ ИНЕРЦИИ I тела относительно точки, оси или плоскости называется сумма произведений массы точек тела m i , на квадраты их расстояний r i до точки, оси или плоскости:

Момент инерции тела относительно оси является мерой инерции тела во вращательном движении вокруг этой оси.

Момент инерции тела может быть также выражен через массу М тела и его радиус инерции r:

МОМЕНТЫ ИНЕРЦИИ ОТНОСИТЕЛЬНО ОСЕЙ, ПЛОСКОСТЕЙ И НАЧАЛА ДЕКАРТОВЫХ КООРДИНАТ.

Момент инерции относительно начала координат (полярный момент инерции):

СВЯЗЬ МЕЖДУ ОСЕВЫМИ, ПЛОСКОСТНЫМИ И ПОЛЯРНЫМ МОМЕНТАМИ ИНЕРЦИИ:

Значения осевых моментов инерции некоторых геометрических тел приведены в табл. 1.

Таблица 1. Момент инерции некоторых тел
Фигура или тело

При с→0 получается прямоугольная пластина

ИЗМЕНЕНИЕ МОМЕНТОВ ИНЕРЦИИ ПРИ ПЕРЕМЕНЕ ОСЕЙ

Момент инерции I u 1 относительно оси u 1 , параллельной данной оси u (рис. 1):

где I u - момент инерции тела относительно оси u; l(l 1) - расстояние от оси u (от оси u 1) до параллельной им оси u с, проходящей через центр масс тела; а - расстояние между осями u и u 1 .

Рисунок 1.

Если ось u центральная (l=0), то

т. е. для любой группы параллельных осей момент инерции относительно центральной оси наименьший.

Момент инерции I u относительно оси u, составляющей углы α, β, γ с осями декартовых координат х, у, z (рис. 2):

Рисунок 2.

Оси х, у, z главные, если

Момент инерции относительно оси u, составляющей углы α, β, γ c главными осями инерции х, у, z:

ИЗМЕНЕНИЕ ЦЕНТРОБЕЖНЫХ МОМЕНТОВ ИНЕРЦИИ ПРИ ПАРАЛЛЕЛЬНОМ ПЕРЕНОСЕ ОСЕЙ:

где - центробежный момент инерции относительно центральных осей х с, y с, параллельных осям х, у; М - масса тела; x с, y с - координаты центра масс в системе осей х, у.

ИЗМЕНЕНИЕ ЦЕНТРОБЕЖНОГО МОМЕНТА ИНЕРЦИИ ПРИ ПОВОРОТЕ ОСЕЙ x, y ВОКРУГ ОСИ z НА УГОЛ α В ПОЛОЖЕНИЕ x 1 y 1 (рис. 3):

Рисунок 3.

ОПРЕДЕЛЕНИЕ ПОЛОЖЕНИЯ ГЛАВНЫХ ОСЕЙ ИНЕРЦИИ. Ось материальной симметрии тела - главная ось инерции тела.

Если плоскость xОz является плоскостью материальной симметрии тела, то любая из осей y - главная ось инерции тела.

Если положение одной из главных осей z гл известно, то положение двух других осей x гл и y гл определяется поворотом осей х и у вокруг оси z гл на угол φ (рис. 3):

ЭЛЛИПСОИД И ПАРАЛЛЕЛЕПИПЕД ИНЕРЦИИ. Эллипсоидом инерции называется эллипсоид, оси симметрии которого совпадают с главными центральными осями тела x гл, y гл, z гл, а полуоси а х, а у, а z равны соответственно:

где r уО z , r х Oz , r xOy - радиусы инерции тела относительно главных плоскостей инерции.

Параллелепипедом инерции называется параллелепипед, описанный вокруг эллипсоида инерции и имеющий с ним общие оси симметрии (рис. 4).

Рисунок 4.

РЕДУЦИРОВАНИЕ (ЗАМЕНА С ЦЕЛЬЮ УПРОЩЕНИЯ РАСЧЕТА) ТВЕРДОГО ТЕЛА СОСРЕДОТОЧЕННЫМИ МАССАМИ . При вычислении осевых, плоскостных, центробежных и полярных моментов инерции тело массой М можно редуцировать восемью сосредоточенными массами М/8, расположенными в вершинах параллелепипеда инерции. Моменты инерции относительно любых осей, плоскостей, полюсов вычисляются по координатам вершин параллелепипеда инерции x i , y i , z i (i=1, 2, ..., 8) по формулам:

ЭКСПЕРИМЕНТАЛЬНОЕ ОПРЕДЕЛЕНИЕ МОМЕНТОВ ИНЕРЦИИ

1. Определение моментов инерции тел вращения с использованием дифференциального уравнения вращения - см. формулы ("Вращательное движение твердого тела") .

Исследуемое тело закрепляется на горизонтальной оси х, совпадающей с его осью симметрии, и приводится во вращение вокруг нее с помощью груза Р, прикрепленного к гибкой нити, навернутой на исследуемое тело (рис. 5), при этом замеряется время t опускания груза на высоту h. Для исключения влияния трения в точках закрепления тела на оси х опыт производится несколько раз при разных значениях веса груза Р.

Рисунок 5.

При двух опытах с грузами Р 1 и Р 2

2. Экспериментальное определение моментов инерции тел посредством изучения колебаний физического маятника (см. 2.8.3) .

Исследуемое тело закрепляют на горизонтальной оси х (нецентральной) и замеряют, период малых колебаний около этой оси Т. Момент инерции относительно оси х определится по формуле

где Р - вес тела; l 0 - расстояние от оси вращения до центра масс С тела.


Top