Фотонное излучение делится на рентгеновское и. Квантовое ионизирующее излучение

Все ионизирующие излучения делятся на фотонные и корпускулярные.

К фотонному ионизирующему излучению относятся:

  • а) Y-излучение, испускаемое при распаде радиоактивных изотопов или аннигиляции частиц. Гамма-излучение по своей природе является коротковолновым электромагнитным излучением, т.е. потоком высокоэнергетических квантов электромагнитной энергии, длина волны которых значительно меньше межатомных расстояний, т.е. y
  • б) рентгеновское излучение, возникающее при уменьшении кинетической энергии заряженных частиц и / или при изменении энергетического состояния электронов атома.

Корпускулярное ионизирующее излучение состоит из потока заряженных частиц (альфа-,бета-частиц, протонов, электронов), кинетическая энергия которых достаточна для ионизации атомов при столкновении. Нейтроны и другие элементарные частицы непосредственно не производят ионизацию, но в процессе взаимодействия со средой высвобождают заряженные частицы (электроны, протоны), способные ионизировать атомы и молекулы среды, через которую проходят:

а) нейтроны - единственные незаряженные частицы, образующиеся при некоторых реакциях деления ядер атомов урана или плутония. Поскольку эти частицы электронейтральны, они глубоко проникают во всякое вещество, включая живые ткани. Отличительной особенностью нейтронного излучения является его способность превращать атомы стабильных элементов в их радиоактивные изотопы, т.е. создавать наведённую радиацию, что резко повышает опасность нейтронного излучения. Проникающая способность нейтронов сравнима с Y- излучением. В зависимости от уровня носимой энергии условно различают нейтроны быстрые (обладающие энергией от 0,2 до 20 Мэ В) и тепловые (от 0,25 до 0,5 Мэ В). Это различие учитывается при проведении защитных мероприятий. Быстрые нейтроны замедляются, теряя энергию ионизации, веществами с малым атомным весом (так называемыми водородосодержащими: парафин, вода, пластмассы и др.). Тепловые нейтроны поглощаются материалами, содержащими бор и кадмий (борная сталь, бораль, борный графит, сплав кадмия со свинцом).

Альфа-, бета-частицы и гамма-кванты обладают энергией всего в несколько мегаэлектронвольт, и создавать наведённую радиацию не могут;

  • б) бета частицы - электроны, испускаемые во время радиоактивного распада ядерных элементов с промежуточной ионизирующей и проникающей способностью (пробег в воздухе до 10-20 м).
  • в) альфа частицы - положительно заряженные ядра атомов гелия, а в космическом пространстве и атомов других элементов, испускаемые при радиоактивном распаде изотопов тяжёлых элементов - урана или радия. Они обладают малой проникающей способностью (пробег в воздухе - не более 10 см), даже человеческая кожа является для них непреодолимым препятствием. Опасны они лишь при попадании внутрь организма, так как способны выбивать электроны из оболочки нейтрального атома любого вещества, в том числе и тела человека, и превращать его в положительно заряженный ион со всеми вытекающими последствиями, о которых будет сказано далее. Так, альфа частица с энергией 5 МэВ образует 150 000 пар ионов.

Рис. 1

Количественное содержание радиоактивного материала в организме человека или веществе определяется термином «активность радиоактивного источника» (радиоактивность). За единицу радиоактивности в системе СИ принят беккерель (Бк), соответствующий одному распаду в 1 с. Иногда на практике применяется старая единица активности - кюри (Ки). Это активность такого количества вещества, в котором за 1с происходит распад 37 млрд. атомов. Для перевода пользуются зависимостью: 1 Бк = 2,7 х 10 Ки или 1 Ки = 3,7 х 10 Бк.

Каждый радионуклид имеет неизменный, присущий только ему период полураспада (время, необходимое для потери веществом половины активности). Например, у урана-235 он составляет 4 470 лет, тогда как у йода-131 - всего лишь 8 суток.

Первые исследования ионизирующего излучения были проведены в конце XIX в. В 1895 г. немецкий физик В.К. Рентген открыл «Х-лучи», названные впоследствии рентгеновским излучением. В 1896 г. французский физик А. Беккерель обнаружил следы естественной радиоактивности солей урана на фотографических пластинках. В 1898 г. супруги Мария и Пьер Кюри установили, что уран после излучения превращается в другие химические элементы. Один из этих элементов они назвали «радий» (Ra) (от лат. «испускающий лучи»).

Ионизирующее излучение – это излучение, взаимодействие которого со средой приводит к образованию ионов разных знаков. Ионизирующие излучения подразделяются на корпускулярное и фотонное.

К корпускулярному излучению относятся: a, b-, протонные и нейтронные излучения.

a-излучение – это поток ядер гелия, образующихся при радиоактивном распаде. Они имеют массу 4 и заряд +2. К a-излучателем относятся около 160 природных и техногенных радионуклидов, большинство которых находятся в конце периодической системы элементов (заряд ядра > 82). a-частицы распространяются в средах прямолинейно, имеют незначительный пробег (расстояние, на котором частицы теряют свою энергию, взаимодействуя с веществом): в воздухе – менее 10 см; в биологических тканях 30-150 мкм. a - частицы обладают высокой ионизирующей и низкой проникающей способностью.

b-излучение – это поток электронов и позитронов. Их масса в десятки тысяч раз меньше массы a-частиц. К b-излучателям относятсяоколо 690 природных и техногенных излучателей. Пробег b-частиц составляет в воздухе несколько метров, а в биологических тканях - около 1 см. Они обладают более высокой, чем a - частицы, проникающей способностью, но меньшей ионизирующей.

Протонное излучение – поток ядер водорода.

Нейтронное излучение – поток ядерных частиц, не имеющих заряда с массой, близкой к массе протона. Свободные нейтроны захватываются ядрами. При этом ядра переходят в возбужденное состояние и делятся с выделением g-квантов, нейтронов и запаздывающих нейтронов. Благодаря запаздывающим нейтронам реакция деления в ядерных реакторах является управляемой. Нейтронное излучение обладает более высокой ионизирующей способностью, по сравнению с другими видами корпускулярного излучения.

Фотон – это квант энергии электромагнитного излучения высокой частоты. Фотонное излучение делится на рентгеновское и g-излучение. Они обладают высокой проникающей и малой ионизирующей способностью.

Рентгеновское излучение – это искусственное электромагнитное излучение, возникающее в рентгеновских трубках («Х – лучи»).

g-излучение это электромагнитное излучениеестественного происхождения. g-лучи распространяются прямолинейно, не отклоняются в электрических и магнитных полях, имеют большой пробег в воздухе.


Непосредственно ионизирующее излучение – это излучение состоящее из заряженных частиц, например, a, b-частиц. Косвенно ионизирующее излучение – это излучение, состоящее из незаряженных частиц, например, нейтронов или фотонов. Они создают вторичное излучение в средах, через которые проходят.

Ионизирующее излучение описывается следующими физическими величинами

Активность вещества A определяется скоростью радиоактивного распада:

где: dN – число спонтанных ядерных превращений за время dt.

Единицы активности:

в системе СИ - Беккерель: 1 Бк = 1 расп/с

внесистемная единица – Кюри: 1 Ки = 3.7 . 10 10 расп/с, что соответствует активности 1 г. чистого Ra.

Период полураспада Т 1/2 – время, необходимое для уменьшения активности радионуклидов в 2 раза. Для U-238 Т 1/2 = 4,56 . 10 9 лет, для Rа-226 Т 1/2 = 1622 года.

Экспозиционная доза X – энергия ионизирующего излучения, вызывающая образование в воздухе заряда dQ одного знака в элементарном объеме, массой dm.

Единицы экспозиционной дозы:

в системе СИ 1 Кл/кг = 3880 Р.

внесистемная единица – Рентген: 1 Р

Поглощенная доза D определяется количеством поглощенной энергии dE на единицу массы облучаемого вещества dm.

Единицы поглощенной дозы:

в системе СИ Грей: 1 Гр

внесистемная единица 1 рад = 0,01 Гр

1 Р = 0.87 рад

1 рад = 1.14 Р

Название «рад» - от первых букв термина «radiation absorbed dose».

Эквивалентная доза H R показывает опасность различных видов радиационного облучения биологических тканей и равна:

где: W R – весовой коэффициент, отражающий опасность того или иного вида ионизирующего излучения для организма.

рентгеновское, g-излучение, b-излучение W R = 1;

нейтроны W R = 5-20;

a-частицы W R = 20.

Единицы эквивалентной дозы:

в системе СИ 1 Зв в честь шведского ученого Зиверта

внесистемная единица – 1 бэр = 0.01 Зв

бэр – биологический эквивалент рада.

Эффективная эквивалентная доза H E – это величина риска возникновения отдаленных последствий облучения всего тела человека и отдельных его органов с учетом их радиочувствительности. Разные органы и ткани имеют разную чувствительность к облучению. Например, при одинаковой эквивалентной дозе облучения H R возникновение рака легких более вероятно, чем щитовидной железы. Поэтому, введено понятие эффективной эквивалентной дозы.

где: W T – весовой коэффициент для биологической ткани.

В данной главе мы рассмотрим основные свойства ионизирующих излучений, используемых в медицине, и обсудим процессы их взаимодействия с веществом.

Виды ионизирующих излучений

Начнём с определения некоторых понятий.

Альфа-излучение - корпускулярное излучение, состоящее из а-частиц (ядер 4 Не), испускаемых при радиоактивном распаде ядер или при ядерных реакциях. Аннигиляционное излучение - фотонное излучение, возникающее в результате аннигиляции частицы и античастицы (например, при взаимодействии р-электрона и /? + -позитрона).

Бета-излучение - корпускулярное излучение с непрерывным энергетическим спектром, состоящее из отрицательно заряженных электронов (р -частицы) или положительно заряженных позитронов (р*-частицы) и возникающее при радиоактивном Р-распаде ядер или нестабильных элементарных частиц. Характеризуется граничной (максимальной) энергией электронов (позитронов). Гамма-излучение - фотонное излучение, возникающее при ядерных превращениях или аннигиляции частиц (диапазон энергий от десятков кэВ до нескольких МэВ).

Ионизирующее излучение» (радиация) - вид излучения, который изменяет физическое состояние атомов или атомных ядер, превращая их в электрически заряженные ионы или продукты ядерных реакций (видимый свет и ультрафиолетовое излучение не относят к ионизирующим излучениям).

Корпускулярное излучение - ионизирующее излучение, состоящее из частиц с массой, отличной от нуля (a-, fi-частиц, нейтронов и др.).

Косвенно ионизирующее излучение - ионизирующее излучение, состоящее из незаряженных частиц, которые могут создавать непосредственно ионизирующее излучение и (или) вызывать ядерные превращения (косвенно ионизирующее излучение может состоять из нейтронов, фотонов и др.).

Нейтронное излучение - поток нейтронов, которые преобразуют свою энергию в упругих и неупругих взаимодействиях с ядрами атомов.

Протонное излучение - излучение, образующееся в процессе самопроизвольного распада нейтронно-дефицитных атомных ядер или как пучок на выходе ионного ускорителя (например, синхрофазотрона).

Рентгеновское излучение - фотонное излучение, состоящее из тормозного и (или) характеристического излучения, генерируемое, например, рентгеновскими трубками. Занимает спектральную область между гамма- и ультрафиолетовым излучением в пределах длин волн мгз+юо нм (ю,2 +ю -5 см). Энергетический диапазон ЮО эВ-ю,1 МэВ. Рентгеновские лучи с длиной волны менее 0,2 нм (Е>50 кэВ) называются жёсткими, с длиной волны более о,2 нм (E

Синхротронное (или магнитотормозное) излучение - электромагнитное излучение, испускаемое заряженными частицами, движущимися по искривлённым магнитным полем траекториям с релятивистскими скоростями. Тормозное излучение - электромагнитное излучение, испускаемое заряженной частицей при её рассеянии (торможении) в электрическом поле, характеризуется непрерывным энергетическим спектром. Иногда в понятие тормозного излучения включают также излучение релятивистских заряженных частиц, движущихся в макроскопических магнитных полях (синхротронное излучение).

Фотонное излучение - электромагнитное косвенно ионизирующее излучение, возникающее при изменении энергетического состояния атомных ядер или при аннигиляции частиц.

Характеристическое излучение - фотонное излучение с дискретным энергетическим спектром, возникающее при изменении энергетического состояния электронов атома.

Табл. 1. Свойства некоторых видов корпускулярной радиации.

К ионизирующим излучениям относят фотоны электромагнитного излучения (у- и рентгеновское излучение с длиной волны менее 20 нм) и корпускулярные излучения. Фотонное излучение с энергией от 50 эВ до 500 эВ называют рентгеновским излучением, а при более высоких энергиях - гамма-излучением. Ионизирующее электромагнитное излучение может быть у-излучением, сопутствующим p-распаду или возникшем при аннигиляции позитронов, а может быть рентгеновским тормозным или характеристическим излучением.

Электролтгнитное излучение - распространяющееся в пространстве возмущение электромагнитного поля (т. е. взаимодействующих друг с другом электрического и магнитного полей).

Электромагнитное излучение - комбинация электрического и магнитного полей, синусоидально изменяющихся в пространстве и времени. Скорость движения волны, и [м/с], связана с длиной волны, Л [м], и частотой колебаний, v : и- Л-v, а так как и обычно постоянна, то v=c/A, с=з-ю 8 м/с - скорость света.

Энергия электромагнитного излучения (эВ):

где h= 6,626-10-34 Джс=4,135Ю, 5 эВс.

Электромагнитное излучение имеет широкий спектр энергий и различные источники: у-излучение атомных ядер и тормозное излучение ускоренных электронов, радиоволны и др. (табл. 1, рис. l). На шкале электромагнитных волн у-излучение граничит с жёстким рентгеновским излучением, занимая область более высоких частот. Оно возникает при распаде радиоактивных ядер и элементарных частиц, взаимодействии быстрых заряженных частиц с веществом, аннигиляции электронно-позитронных пар и др. Гамма-излучение обладает малой длиной волны (Лею нм) и ярко выраженными корпускулярными свойствами, т.е. ведёт себя подобно потоку частиц (у-квантов, или фотонов) с энергией /iv.

В медицине широко применение находит тормозное излучение, возникающее при прохождении ускоренных электронов в среде. В зависимости от энергии возникающего электромагнитного излучения его относят к рентгеновскому излучению (энергии десятки и сотни кэВ) или к у-излучению (энергии единицы или десятки МэВ, но на ускорителях достигают энергий в несколько десятков ГэВ). Излучение рентгеновского диапазона обычно получают с помощью рентгеновских трубок.

Интенсивность тормозного излучения пропорциональна квадрату ускорения заряженной частицы. Так как ускорение обратно пропорционально массе частицы, то в одном и том же поле тормозное излучение электрона в миллионы раз мощнее излучения протона. Поэтому чаще всего используется тормозное излучение, возникающее при рассеянии электронов в электростатическом поле атомных ядер и электронов.


Рис. 1.

Спектр фотонов тормозного излучения непрерывен и обрывается при максимально возможной энергии, равной начальной энергии электрона. Так как интенсивность тормозного излучения пропорциональна Z 2 , то для увеличения выхода фотонов тормозного излучения в электронных пучках используются мишени из веществ с большими Z.

К корпускулярному ионизирующему излучению относят a-излучение, электронное, протонное, нейтронное и мезонное излучения. Корпускулярное излучение, состоящее из потока заряженных частиц (а-, (3-частиц, протонов, электронов), кинетическая энергия которых достаточна для ионизации атомов при столкновении с ними, относится к классу непосредственно ионизирующего излучения. Нейтроны сами не производят ионизацию, но в процессе взаимодействия со средой высвобождают заряженные частицы (электроны, протоны), способные ионизировать атомы и молекулы среды, через которую проходят. Нейтронное излучение относят к косвенно ионизирующим излучениям.

Нейтроны существенно различаются по своим энергиям. Для энергетической характеристики нейтронного излучения используют понятие спектра нейтронов. Нейтроны квалифицируют по скорости движения:

  • - Релятивистские нейтроны, с энергией более 10 ю эВ;
  • - Быстрые нейтроны, с энергией больше o.i МэВ (иногда больше i МэВ)
  • - Медленные нейтроны - нейтроны с энергией менее юо КэВ. или по «температуре»:
  • - Надтепловые нейтроны, с энергией от 0.025 до 1 эВ;
  • - Горячие нейтроны, с энергией порядка 0.2 эВ;
  • - Тепловые нейтроны, с энергией примерно 0,025 эВ;
  • - Холодные нейтроны, с энергией от 510-5 эВ до 0.025 эВ;
  • - Очень холодные нейтроны, с энергией 2*10-? - 5*10-5 эВ;
  • - Ультрахолодные нейтроны, с энергией менее 2*10-? эВ.

Взаимодействие нейтронов с атомами является слабым, что позволяет нейтронам глубоко проникать в вещество.

Электронное излучение - обычно пучок электронов на выходе электронного ускорителя. Оно характеризуется средней энергией излучения и дисперсией (разбросом), а также шириной пучка. Специальными мерами можно получить моноэнергетический узкий пучок высокоэнергетических электронов.

Бета-излучение сопровождает самый распространенный тип радиоактивного распада ядер - p-распад. Так как скорость р-частиц значительно выше скорости а-частиц, они реже взаимодействуют с атомами среды; плотность ионизации на единицу пробега у них в сотни раз ниже, чем у а-частиц, а пробег в воздухе достигает ю м. В биологической мягкой ткани пробег равен 10+12 мм. Поглощается такое излучение слоем алюминия толщиной 1 мм. В отличие от электронного излучения, p-излучение сопровождается потоком антинейтрино для электронов и нейтрино для позитронов. Позитронное излучение сопровождается ещё и аннигиляционным у-излучением (с энергией 0,51 и/или 1,02 МэВ).

Ионизирующее излучение (ИИ) – это излучение, взаимодействие которого со средой приводит к образованию в этой среде ионов разных знаков. Излучение считается ионизирующим, если оно способно разрывать химические связи молекул. Ионизирующее излучение делят на корпускулярное и фотонное.

Радиоволны, световые волны, тепловая энергия Солнца не относятся к ионизирующим излучениям, так как они не вызывают повреждения организма путем ионизации.

Корпускулярное – это поток частиц с массой отличной от нуля (электроны, протоны, нейтроны, альфа-частицы).

Фотонное – это электромагнитное излучение, косвенно ионизирующее излучение (гамма излучение, характеристическое излучение, тормозное излучение, рентгеновское излучение, аннигиляционное излучение).

Альфа-излучение – это поток альфа-частиц (ядер атомов гелия), испускаемых при радиоактивном распаде, а также при ядерных реакциях и превращениях. Альфа-частицы обладают сильной ионизирующей способностью и незначительной проникающей способностью. В воздухе они проникают на глубину несколько сантиметров, в биологической ткани – на глубину доли миллиметра, задерживается листом бумаги, тканью одежды. Альфа-излучение особо опасно при попадании его источника внутрь организма с пищей или с вдыхаемым воздухом.

Бета-излучение – это поток электронов или позитронов, испускаемых ядрами радиоактивных элементов при бета-распаде. Их ионизирующая способность меньше, чем у альфа-частиц, но проникающая способность во много раз больше, и составляет десятки сантиметров. В биологической ткани они проникают на глубину до 2 см, одеждой задерживается только частично. Бета-излучение опасно для здоровья человека, как при внешнем, так и при внутреннем облучении.

Протонное излучение – это поток протонов, составляющих основу космического излучения, а также наблюдаемых при ядерных взрывах. Их пробег в воздухе и проникающая способность занимают промежуточное положение между альфа и бета-излучением.

Нейтронное излучение – поток нейтронов, наблюдаемых при ядерных взрывах, особенно нейтронных боеприпасов и работе ядерного реактора. Последствия его воздействия на окружающую среду зависят от начальной энергии нейтрона, которая может меняться в пределах 0,025 –300 МэВ.

Гамма-излучение – электромагнитное излучение (длина волны 10 –10 –10 –14 м), возникающее в некоторых случаях при альфа и бета-распаде, аннигиляции частиц и при возбуждении атомов и их ядер, торможении частиц в электрическом поле. Проникающая способность гамма-излучения значительно больше, чем у вышеперечисленных видов излучений. Глубина распространения гамма-квантов в воздухе может достигать сотен и тысяч метров. Ионизирующая способность (косвенная) значительно меньше, чем у вышеперечисленных видов излучений. Большинство гамма-квантов проходит через биологическую ткань, и только незначительное количество поглощается телом человека.

Тормозное излучение – фотонное излучение с непрерывным энергетическим спектром, испускаемое при уменьшении кинетической энергии заряженных частиц. Воздействие на окружающую среду такое, как и гамма-излучения.

Характеристическое излучение – фотонное излучение с дискретным энергетическим спектром, возникающее при изменении энергетического состояния электронов атома. Воздействие на биологическую ткань аналогично гамма-излучению.

Аннигиляционное излучение – фотонное излучение, возникающее в результате аннигиляции частицы и античастицы (например, позитрона и электрона). Воздействие на биологическую ткань аналогично гамма-излучению.

Кафедра онкологии, лучевой терапии и лучевой диагностики

Зав. кафедрой: проф., д.м.н. Редькин Александр Николаевич

Преподаватель: к.м.н. Черкасова Ирина Ивановна

Реферат на тему: «Физика ионизирующих излучений»

Выполнила: Васильченко Марина Геннадьевна

Излучения, используемые в медицинской радиологии, делят на 2 группы:

1) Ионизирующие излучения

2) Неионизирующие излучения, к которым относятся радиоволны, инфракрасное излучение, а также ультразвуковые волны в диапазоне 1-15 Мгц.

Ионизирующие излучения - это электромагнитные излучения, кото­рые создаются при ионизации атомов, их радиоактивном распаде, формируя при взаимодействии со средой ионы различных знаков.

Ионизирующие излучения условно делят на 2 группы:

1) Корпускулярные

2) Фотонные (квантовые)

Корпускулярное ионизирующее излучение

Данное излучение представляет собой потоки элементарных частиц:

α – частицы, β – частицы (электроны, позитроны), протоны, нейтроны, мезоны и др. Они обладают зарядом, массой и энергией в отличие от фотонов.

Альфа-излучение представляет собой поток ядер атома гелия, имеет массу 4 у.е. и заряд +2. Энергия альфа-частиц составляет 4-7 Мэв. Пробег альфа-частиц в воздухе достигает 8-10 см, в биологи­ческой ткани 50-70 микрометров (мк). Так как пробег аль­фа-частиц в веществе невелик, а энергия очень большая, то плотность ионизации на единицу длины пробега у них очень высока (на 1 см до де­сятка тысяч пар-ионов).

Бета-излучение - поток электронов или позитронов при радиоактив­ном распаде. Бета-частицы имеют массу, равную 1/1838 массы атома во­дорода, единичный отрицательный (бета-частица) или положительный (позитрон) заряды. Энергия бета-излучения не превышает нескольких Мэв. Пробег в воздухе составляет от 0,5 до 2 м, в тканях - 1- 2 см. Их ионизирующая способность ниже альфа-частиц (несколько де­сятков пар-ионов на 1 см пути).

Нейтроны - нейтральные частицы, имеющие массу атома водорода. Они при взаимодействии с веществом теряют свою энергию в упругих и неупругих столкновени­ях.

При взаимодействии корпускулярных излучений с веществом элементарные частицы передают свою энергию атомам тканей, вызывая их ионизацию и распад на противоположные заряженные частицы (ионы).

Протоны и α – частицы, имея большую массу, заряд и энергию, движутся в тканях прямолинейно и образуют густые скопления ионов.

Электрон, имея небольшую массу, проходит в тканях извилистый путь и изменяет направление движения под действием электрических полей атомов.

В зависимости от массы ядер и энергии нейтронов, последние делятся на быстрые и медленные. Быстрые нейтроны теряют энергию в результате столкновения с ядрами водорода или выталкивают протоны. Медленные и тепловые захватываются атомами легких элементов, таких как натрий, фосфор, хлор, и они становятся радиоактивными (так называемая наведенная радиоактивность).

Квантовое ионизирующее излучение

Представляет собой электромагнитное излучение, состоящее из фотонов, частиц, не имеющих массы и заряда, но обладающих большой энергией и движущихся со скоростью света.

К квантовому ионизирующему излучению относят:

- γ- излучение

Рентгеновское излучение (тормозное; характеристическое)

γ-излучение - фотонное излучение, возникающее при измене­нии энергетического состояния атомных ядер, при ядерных превращени­ях или при аннигиляции частиц. Обладает энергией от нескольких тысяч до нескольких миллионов электрон-вольт. Распространяется оно, как и рентгеновское излучение, в воздухе со скоростью света. Ионизирующая способность γ -излучения значительно меньше, чем у α- и β -частиц. γ -излучение обладает большой проникающей способностью, изменяющейся в широких пределах.

Рентгеновское излучение - фотонное излучение, состоящее из тор­мозного и (или) характеристического излучения, возникает в рентге­новских трубах, ускорителях электронов, с энергией фотонов не более 1 Мэв. Занимает область электромагнитного спектра между гамма- и ультрафиолетовым излучениями и представляет собой электромагнитное излучение с длиной волны от 10 -14 до 10 -7 м.

А) Тормозное излучение - фотонное излучение с непрерывным энергетическим спектром, возникающее при уменьшении кинетической энергии заряженных частиц.

Б) Характеристическое излучение - это фо­тонное излучение с дискретным энергетическим спектром, возникающее при изменении электронами энергетических уровней.

Рентгено­вское излучение, так же как и гамма-излучение, имеет высокую проника­ющую способность и малую плотность ионизации среды.

Основные свойства рентгеновских лучей

Невидимость - чувствительные клетки сетчатки глаза человека не реа­гируют на рентгеновские лучи, так как длина их волны в тысячи раз меньше, чем у видимого света;

Прямолинейное распространение – лучи преломляются, поляризуются (распространяются в определенной плоскости) и дифрагируют, как и видимый свет. Коэффициент преломления очень мало отличается от единицы;

Фотографическое действие - разлагают галоидные соеди­нения серебра, в том числе находящиеся в фотоэмульсиях, что позволяет полу­чать рентгеновские снимки;

Проникающая способность , на которой и основана рентгенодиагностика, зависит от плотности тканей. Так, костная ткань обладает наибольшей плотностью, а значит, и поглощающей способностью, поэтому при рентгенологическом исследовании даёт затемнение высокой интенсивности. Паренхиматозные органы также выглядят в виде затемнения, но они в 2 раза меньше задерживают рентгеновские лучи, и затемнение имеет среднюю интенсивность. Воздух не задерживает лучи и создаёт просветление, как, например, лёгочная ткань, которая представлена альвеолами, заполненными воздухом.

Люминесцирующее действие - вызывают люминесценцию ряда химических соединений (люминофоров), на этом осно­вана методика рентгеновского просвечивания. Интенсивность свечения зависит от строения флюоресцирующего вещества, его количества и расстояния от источника рентгеновского излучения. Люминофоры используют не только для получения изображения исследуемых объектов на рентгеноскопическом экране, но и при рентгенографии, где они позволяют увеличить лучевое воздействие на рентгенографическую пленку в кассете благодаря примене­нию усиливающих экранов, поверхностный слой которых выполнен из флюо­ресцирующих веществ;

Ионизирующее свойство заключается в том, что под действием рентгеновских лучей в любой среде, через которую они проходят, образуются ионы, по количеству которых судят о дозе излучения. На этом свойстве основан метод дозиметрии - измерение дозы с помощью различных видов специальных приборов - дозиметров. Дозиметрию осуществляют специальные ведомственные службы.

Биологическое или повреждающее действие на организм человека ионизирующих излучений вызывает необходимость защиты от него как персонала рентгеновских кабинетов, так и пациентов при осуществлении методов рентгенодиагностики. В то же время это свойство используют в лучевой терапии для лечения как опухолевых, так и неопухолевых заболеваний.

Закон обратных квадратов - для точечного источника рентгеновского излучения интенсивность убывает пропорционально квадра­ту расстояния до источника.

Типы взаимодействия фотонов с атомами среды:

А) Фотоэффект (при низких энергиях фотонов) – фотон вырывает электроны из атома, отдавая ему свою энергию.

Б) Комптоновское неупругое рассеяние электронов на атомах (с энергией до 1 МэВ) – как сам фотон, так и образуемые им электроны отдачи также вызывают ионизацию вещества. Фотон выбивает электрон, отдавая часть энергии и меняет свое направление. Эти оба эффекта обусловливают максимум поглощения энергии в поверхностном слое тканей (до 0,5 см), здесь образуется наибольшее количество вторичных электронов.

В) Образование пар элементарных частиц (при энергии больше 1 МэВ) – вызывает максимум актов ионизации в глубине тканей. Образуются электронно-позитронные пары. Сам фотон исчезает. Позитрон быстро теряет энергию и объединяется со встречным электроном. После чего обе частицы исчезают (аннигиляция) и вместо них возникают 2 фотона, которые расходятся в противоположные стороны. Их энергия в 2 раза меньше исходного фотона.

Единицы доз излучения

Поглощенная доза

Поглощенная доза (D) - величина, равная отношению энергии ΔΕ, переданной элементу облучаемого вещества, к массе Δm этого элемента:

В СИ единицей поглощенной дозы является грей (Гр), в честь английского физика-радиобиолога Луи Гарольда Грея.

1 Гр - это поглощенная доза ионизирующего излучения любого вида, при которой в 1 кг массы вещества поглощается энергия 1 Дж энергии излучения.

В практической дозиметрии обычно пользуются внесистемной единицей поглощенной дозы - рад (1 рад = 10 -2 Гр).

Эквивалентная доза

Величина поглощенной дозы учитывает только энергию, переданную облучаемому объекту, но не учитывает «качество излучения». Понятие качества излучения характеризует способность данного вида излучения производить различные радиационные эффекты. Для оценки качества излучения вводят параметр - коэффициент качества (quality factor). Он является регламентированной величиной, его значения определены специальными комиссиями и включены в международные нормы, предназначенные для контроля над радиационной опасностью.


Top