Элементы механики сплошных сред. Основы молекулярной физики и термодинамики

ЛЕКЦИЯ № 5 Элементы механики сплошных сред Физическая модель: сплошная среда – это модель вещества, в рамках которой пренебрегают внутренним строением вещества, полагая, что вещество непрерывно распределено по всему занимаемому им объёму и целиком заполняет этот объём. Однородной называется среда, имеющая в каждой точке одинаковые свойства. Изотропной называется среда, свойства которой одинаковы по всем направлениям. Агрегатные состояния вещества Твердое тело – состояние вещества, характеризующееся фиксированным объемом и неизменностью формы. Жидкость – состояние вещества, характеризующееся фиксированным объемом, но не имеющее определенной формы. Газ – состояние вещества, при котором вещество заполняет весь предоставленный ему объем.

Механика деформируемого тела Деформация – изменение формы и размеров тела. Упругость - свойство тел сопротивляться изменению их объема и формы под воздействием нагрузок. Деформация называется упругой, если она исчезает после снятия нагрузки и – пластической, если она после снятия нагрузки не исчезает. В теории упругости доказывается, что все виды деформаций (растяжение - сжатие, сдвиг, изгиб, кручение) могут быть сведены к одновременно происходящим деформациям растяжения - сжатия и сдвига.

Деформация растяжения – сжатия Растяжение - сжатие - увеличение (или уменьшение) длины тела цилиндрической или призматической формы, вызываемое силой, направленной вдоль продольной его оси. Абсолютная деформация – величина, равная изменению размеров тела, вызванному внешним воздействием: , (5. 1) где l 0 и l - начальная и конечная длина тела. Закон Гука (I) (Роберт Гук, 1660 г.): сила упругости пропорциональна величине абсолютной деформации и направлена в сторону ее уменьшения: , (5. 2) где k - коэффициент упругости тела.

Относительная деформация: . (5. 3) Механическое напряжение – величина, характеризующая состояние деформированного тела =Па: , (5. 4) где F - сила, вызывающая деформацию, S - площадь сечения тела. Закон Гука (II): Механическое напряжение, возникающее в теле, пропорционально величине его относительной деформации: , (5. 5) где E - модуль Юнга – величина, характеризующая упругие свойства материала, численно равная напряжению, возникающему в теле при единичной относительной деформации, [E]=Па.

Деформации твердых тел подчиняются закону Гука до известного предела. Связь между деформацией и напряжением представляется в виде диаграммы напряжений, качественный ход которой рассмотрен для металлического бруска.

Энергия упругой деформации При растяжении – сжатии энергия упругой деформации, (5. 8) где V – объем деформируемого тела. Объемная плотность растяжении – сжатии энергии упругой деформации при (5. 9) Объемная плотность деформации сдвига энергии упругой деформации (5. 10) при

Элементы механики жидкостей и газов (гидро- и аэромеханика) Находясь в твердом агрегатном состоянии, тело одновременно обладает как упругостью формы, так и упругостью объема (или, что то же самое, при деформациях в твердом теле возникают как нормальные, так и тангенциальные механические напряжения). Жидкости и газы обладают лишь упругостью объема, но не обладают упругостью формы (они принимают форму сосуда, в котором находятся). Следствием этой общей особенности жидкостей и газов является одинаковость в качественном отношении большинства механических свойств жидкостей и газов, а их отличием являются лишь количественные характеристики (например, как правило, плотность жидкости больше плотности газа). Поэтому в рамках механики сплошных сред используется единый подход к изучению жидкостей и газов.

Исходные характеристики Плотность вещества скалярная физическая величина, характеризующая распределение массы по объему вещества и определяемая отношением массы вещества, заключённой в некотором объёме, к величине этого объёма =м/кг 3. В случае однородной среды плотность вещества рассчитывается по формуле (5. 11) В общем случае неоднородной среды масса и плотность вещества связаны соотношением (5. 12) Давление – скалярная величина, характеризующая состояние жидкости или газа и равная силе, которая действует на единичную поверхность в направлении нормали к ней [p]=Па: (5. 13)

Элементы гидростатики Особенности сил, действующих внутри покоящейся жидкости (газа) 1) Если внутри покоящейся жидкости выделить небольшой объем, то жидкость на этот объем оказывает одинаковое давление во всех направлениях. 2) Покоящаяся жидкость действует на соприкасающуюся с ней поверхность твердого тела с силой, направленной по нормали к этой поверхности.

Уравнение неразрывности Трубка тока - часть жидкости, ограниченная линиями тока. Стационарным (или установившимся) называется такое течение жидкости, при котором форма и расположение линий тока, а также значения скоростей в каждой точке движущейся жидкости со временем не изменяются. Массовый расход жидкости – масса жидкости, проходящая через поперечное сечение трубки тока в единицу времени =кг/с: , (5. 15) где и v – плотность и скорость течения жидкости в сечении S.

Уравнение неразрывности – математическое соотношение, в соответствии с которым при стационарном течении жидкости ее массовый расход в каждом сечении трубки тока один и тот же: , (5. 16)

Несжимаемой называется жидкость, плотность которой не зависит от температуры и давления. Объемный расход жидкости – объем жидкости, проходящий через поперечное сечение трубки тока в единицу времени =м 3/с: , (5. 17) Уравнение неразрывности несжимаемой однородной жидкости – математическое соотношение, в соответствии с которым при стационарном течении несжимаемой однородной жидкости ее объемный расход в каждом сечении трубки тока один и тот же: , (5. 18)

Вязкость – свойство газов и жидкостей оказывать сопротивление перемещению одной их части относительно другой. Физическая модель: идеальная жидкость – воображаемая несжимаемая жидкость, в которой отсутствуют вязкость и теплопроводность. Уравнение Бернулли (Даниил Бернулли 1738 г.) - уравнение, являющееся следствием закона сохранения механической энергии для стационарного потока идеальной несжимаемой жидкости и записанное для произвольного сечения трубки тока, находящейся в поле сил тяжести: . (5. 19)

В уравнении Бернулли (5. 19): p - статическое давление (давление жидкости на поверхность обтекаемого ею тела; - динамическое давление; - гидростатическое давление.

Внутреннее трение (вязкость). Закон Ньютона (Исаак Ньютон, 1686 г.): сила внутреннего трения, приходящаяся на единицу площади движущихся слоев жидкости или газа, прямо пропорциональна градиенту скорости движения слоев: , (5. 20) где - коэффициент внутреннего трения (динамическая вязкость), = м 2 /с.

Виды течения вязкой жидкости Ламинарное течение - форма течение, при которой жидкость или газ перемещается слоями без перемешивания и пульсаций (то есть беспорядочных быстрых изменений скорости и давления). Турбулентное течение - форма течения жидкости или газа, при которой их элементы совершают неупорядоченные, неустановившиеся движения по сложным траекториям, что приводит к интенсивному перемешиванию между слоями движущихся жидкости или газа.

Число Рейнольдса Критерий перехода ламинарного режима течения жидкости в турбулентный режим основан на использовании числа Рейнольдса (О сборн Рéйнольдс, 1876 -1883 гг.). В случае движения жидкости по трубе число Рейнольдса определяется как, (5. 21) где v – средняя по сечению трубы скорость жидкости; d – диаметр трубы; и - плотность и коэффициент внутреннего трения жидкости. При значениях Re 4000 – турбулентный режим. При значениях 2000

Ламинарное течение вязкой жидкости в горизонтальной трубе Рассмотрим течение вязкой жидкости, обратившись непосредственно к опыту. При помощи резинового шланга подсоединим к водопроводному крану тонкую горизонтальную стеклянную трубку с впаянными в нее вертикальными манометрическими трубками (см. рисунок). При небольшой скорости течения хорошо видно понижение уровня воды в манометрических трубках в направлении течения (h 1>h 2>h 3). Это указывает на наличие градиента давления вдоль оси трубки – статическое давление в жидкости уменьшается по потоку.

Ламинарное течение вязкой жидкости в горизонтальной трубе При равномерном прямолинейном течении жидкости силы давления уравновешиваются силами вязкости.

Распределение скоростей в поперечном сечении потока вязкой жидкости можно наблюдать при ее вытекании из вертикальной трубки через узкое отверстие (см. рисунок). Если, например, при закрытом кране К налить вначале неподкрашенный глицерин, а затем сверху осторожно добавить подкрашенный, то в состоянии равновесия граница раздела Г будет горизонтальной. Если кран К открыть, то граница примет форму, похожую на параболоид вращения. Это указывает на существование распределения скоростей в сечении трубки при вязком течении глицерина.

Формула Пуазейля Распределение скоростей в сечении горизонтальной трубы при ламинарном течении вязкой жидкости определяется формулой, (5. 23) где R и l радиус и длина трубы, соответственно, p – разность давлений на концах трубы, r – расстояние от оси трубы. Объемный расход жидкости определяется формулой Пуазейля (Жан Пуазейль, 1840 г.): (5. 24)

Движение тел в вязкой среде При движении тел в жидкости или газе на тело действует сила внутреннего трения, зависящая от скорости движения тела. При малых скоростях наблюдается ламинарное обтекание тела жидкостью или газа и сила внутреннего трения оказывается пропорциональной скорости движения тела и определяется формулой Стокса (Джордж Стокс, 1851 г.): , (5. 25) где b – постоянная, зависящая от формы тела и его ориентации относительно потока, l – характерный размер тела. Для шара (b=6 , l=R) сила внутреннего трения: , (5. 26) где R – радиус шара.

Жидкости и газы во многом схожи по своим свойствам. Они текучи и принимают форму того сосуда, в котором находятся. Они подчиняются законам Паскаля и Архимеда.

При рассмотрении движения жидкостей можно пренебречь силами трения между слоями и считать их абсолютно несжимаемыми. Такая абсолютно невязкая и абсолютно несжимаемая жидкость называется идеальной .

Движение жидкости можно описать, если показать траектории движения ее частиц таким образом, чтобы касательная в любой точке траектории совпадала с вектором скорости. Эти линии называются линиями тока . Линии тока принято проводить так, чтобы их густота была больше там, где больше скорость течения жидкости (рис.2.11).


Величина и направление вектора скорости V в жидкости могут меняться со временем, то и картина линий тока может непрерывно меняться. Если же вектора скорости в каждой точке пространства не меняются, то течение жидкости называют стационарным .

Часть жидкости, ограниченная линиями тока, называется трубкой тока . Частицы жидкости, двигаясь внутри трубки тока, не пересекают ее стенок.

Рассмотрим одну трубку тока и обозначим через S 1 и S 2 площади поперечного сечения в ней (рис.2.12). Тогда за единицу времени через S 1 и S 2 протекают одинаковые объемы жидкости:

S 1 V 1 =S 2 V 2 (2.47)

это применимо к любому сечению трубки тока. Следовательно, для идеальной жидкости величина SV=const в любом сечении трубки тока. Это соотношение называется неразрывностью струи . Из него следует:

т.е. скорость V стационарного течения жидкости обратно пропорциональна площади сечения S трубки тока, а это может быть обусловлено градиентом давления в жидкости вдоль трубки тока. Теорема о неразрывности струи (2.47) применима и к реальным жидкостям (газам) при их течении в трубах разного сечения, если силы трения невелики.

Уравнение Бернулли . Выделим в идеальной жидкости трубку тока переменного сечения (рис.2.12). В силу неразрывности струи через S 1 и S 2 за одно время протекают одинаковые объемы жидкости ΔV.


Энергия каждой частицы жидкости складывается из ее кинетической энергии и потенциальной энергии. Тогда при переходе от одного сечения трубки токи к другому приращение энергии жидкости будет:

В идеальной жидкости приращение ΔW должно равняться работе сил давления на изменение объема ΔV, т.е. А=(Р 1 -Р 2)· ΔV .

Приравнивая ΔW=A и сокращая на ΔVи учитывая, что (ρ -плотность жидкости), получим:

т.к. сечение трубки тока взяты произвольно, то для идеальной жидкости вдоль любой линии тока выполняется:

. (2.48)

где Р -статическое давление в определенном сечении S трубки тока;

Динамическое давление для этого сечения; V-скорость протекания жидкости через это сечение;

ρgh -гидростатическое давление.

Уравнение (2.48) называется уравнением Бернулли .

Вязкая жидкость . В реальной жидкости при перемещении ее слоев относительно друг друга возникают силы внутреннего трения (вязкость). Пусть два слоя жидкости отстоят друг от друга на расстояние Δх и движутся со скоростями V 1 и V 2 (рис.2.13).


Тогда сила внутреннего трения между слоями (закон Ньютона):

, (2.49)

где η -коэффициент динамической вязкости жидкости:

Средняя арифметическая скорость молекул;

Средняя длина свободного пробега молекул;

Градиент скорости слоев; ΔS – площадь соприкасающихся слоев.

Слоистое течение жидкости называется ламинарным . При возрастании скорости слоистый характер течения нарушается, происходит перемешивание жидкости. Такое течение называют турбулентным .

При ламинарном течении поток жидкости Q в трубе радиуса R пропорционален перепаду давления на единице длины трубы ΔР/ℓ :

Формула Пуазейля. (2.51)

В реальных жидкостях и газах движущиеся тела испытывают действия силы сопротивления. Например, сила сопротивления, действующая на шарик, равномерно движущийся в вязкой среде, пропорциональна его скорости V:

Формула Стокса, (2.52)

где r -радиус шарика.

При увеличении скорости движения обтекание тела нарушается, позади тела образуются завихрения, на что дополнительно тратится энергия. Это приводит к возрастанию лобового сопротивления.

Лекция 4. Элементы механики сплошных сред

Рассмотрим движение идеальной жидкости - сплошной среды, сжимаемостью и вязкостью которой можно пренебречь. Выделим в ней некоторый объем, в нескольких точках которого определены векторы скорости движения частиц жидкости в момент времени. Если картина векторного поля со временем остается неизменной, то такое движение жидкости называется установившимся. При этом траектории частиц представляют собой непрерывные и не пересекающиеся линии. Их называют линиями тока , а объем жидкости, ограниченный линиями тока, трубкой тока (рис.4.1).

Поскольку частицы жидкости не пересекают поверхность такой трубки, ее можно рассматривать как реальную трубку с неподвижными для жидкости стенками. Выделим в трубке тока произвольные сечения и перпендикулярные направлению скорости частиц в сечениях и, соответственно (рис.4.1).

За малый промежуток времени через эти сечения протекают объемы жидкости

. (4.1)

Так жидкость несжимаема и. И тогда для любого сечения трубки тока имеет место равенство

. (4.2)

Рис.4.1

Оно называется уравнением неразрывности струи. В соответствии с (4.2) там, где сечение меньше, скорость течения жидкости больше и наоборот.

Уравнение Бернулли. Пусть рассматриваемые сечения трубки тока идеальной жидкости малы, так что можно считать величины скорости и давления в них постоянными, т.е. и, в сечении и, в (рис. 4.2).

При движении жидкости за малый промежуток времени сечение, переместится в положение пройдя путь, а сечение - в положение, пройдя. Объем жидкости, заключенный между сечениями и вследствие уравнения неразрывности будет

равен объем жидкости, заключенному в промежутке

Рис. 4.2 между и. Трубка имеет некоторый наклон

и центры ее сечений и находятся на высотах и над заданным

горизонтальным уровнем. Учитывая, что и, изменение полной энергии выделенной массы жидкости, расположенной в начальный момент между сечениями и, может быть представлено в виде

. (4.3)

Это изменение, согласно закону сохранения энергии, обусловлено работой внешних сил. В данном случае это силы давления и, действующие, соответственно, на сечения и, где и соответствующие давления. Для любого сечения трубки тока

, (4.4)

где – плотность жидкости Равенство (4.4) выражает основной закон гидродинамики, которое называется также уравнением Бернулли по имени ученого, получившего его впервые.

Давление в потоке жидкости. Следует отметить, что в выражении (4.4) все слагаемые имеют размерность давления и соответственно называются: –динамическим, – гидростатическим или весовым, – статическим давлением, а их сумма полным давлением. С учетом этого соотношение (4.4) можно выразить словами: в стационарном течении идеальной жидкости полное давление в любом сечении трубки тока (в пределе- линии тока) – величина постоянная, а скорость потока

. (4.5)

Истечение жидкости из отверстия. Пусть отверстие находящееся вблизи дна сосуда заполненного жидкостью, открыто (рис. 4.3). Выделим трубку тока с сечениями - на уровне открытой поверхности жидкости в сосуде; - на уровне отверстия -. Для них уравнение Бернулли имеет вид

. (4.6)

Здесь, где - атмосферное давление. Поэтому из (4.6) имеем

(4.7)

Если, то и членом можно

Рис. 4.3 пренебречь. Тогда из (4.7) получим

Следовательно, скорость истечения жидкости будет равна:

, (4.8)

где. Формула (4.8) получена впервые Торричелли и носит его имя. За малый промежуток времени из сосуда вытекает объем жидкости. Соответствующая ему масса, где - плотность жидкости. Она имеет импульс. Следовательно, сосуд сообщает этот импульс вытекающей массе, т.е. действует силой

По третьему закону Ньютона на сосуд будет при этом действовать сила, т.е.

. (4.9)

Здесь - сила реакции текущей жидкости. Если сосуд находится на тележке, то он под действием силы придет в движение, которое называется реактивным движением.

Ламинарное и турбулентное течения. Вязкость. Течение жидкости, при котором каждый ее слой скользит относительно других таких же слоев, и отсутствует их перемешивание, называется ламинарным или слоистым . Если внутри жидкости происходит образование вихрей и интенсивное перемешивание слоев, то такое течение называется турбулентным.

Установившееся (стационарное) течение идеальной жидкости является ламинарным при любых скоростях. В реальных жидкостях между слоями возникают силы внутреннего трения, т.е. реальные жидкости обладают вязкостью. Поэтому, каждый из слоев тормозит движение соседнего слоя. Величина силы внутреннего трения пропорциональна площади соприкосновения слоев и градиенту скорости, т.е.

, (4.10)

где - коэффициент пропорциональности, называемый коэффициентом вязкости. Единицей его является (Паскаль- секунда). Вязкость зависит от рода жидкости и от температуры. С ростом температуры вязкость уменьшается.

Если сила внутреннего трения невелика и скорость течения мала, то движение практически является ламинарным. При больших силах внутреннего трения нарушается слоистый характер течения, начинается интенсивное перемешивание, т.е. происходит переход к турбулентности. Условия этого перехода при течении жидкости по трубам определяется величиной кр , называемой числом Рейнольдса

, (4.11)

где - плотность жидкости, - средняя по сечению трубы скорость течения, - диаметр трубы. Опыты показывают, что при течение ламинарное, при оно становится турбулентным. Для труб круглого сечения радиуса число Рейнольдса. Влияние вязкости приводит к тому, что при скорость течения по трубе круглого сечения у различных слоев оказывается разной. Ее среднее значение определяется формулой Пуазейля

, (4.12)

где - радиус трубы, ()- разность давлений на концах трубы, - ее длина.

Влияние вязкости обнаруживается и при взаимодействии потока с неподвижным телом. Обычно, в соответствии с механическим принципом относительности, рассматривается обратная задача, Например, Стоксом установлено, что при на шар, движущийся в жидкости, действует сила трения

, (4.13)

где r - радиус шарика, - скорость его движения. Формула Стокса (4.13) в лабораторном практикуме применяется для определения коэффициента вязкости жидкостей.

Колебания и волны

Колебательным движением, или просто колебанием, называется движение, характеризующееся той или иной степенью повторяемости во времени значений физических величин, определяющих это движение. С колебаниями мы встречаемся при изучении самых различных физических явлений: звука, света, переменных токов, радиоволн, качаний маятника и т.д. Несмотря на большое разнообразие колебательных процессов, все они совершаются по некоторым общим для них закономерностям. Наипростейшее из них- гармоническое колебательное движение. Колебательное движение называется гармоническим, если изменение физической величины х (смещения) происходит по закону косинуса (или синуса)

, (4.14)

где величина А – равная максимальному смещению х системы из положения равновесия, называется амплитудой колебания, (, определяет величину смещения х в данный момент времени и называется фазой колебания. В момент начала отсчета времени (фаза колебания равна. Поэтому величина называется начальной фазой. Фаза измеряется в радианах или градусах,- циклическая частота, равная числу полных колебаний, происходящих за время с.

Период - это время одного полного колебания. Он связан с циклической частотой следующим соотношением

. (4.15)

Очевидно, линейная частота (число колебаний в единицу времени) связана с периодом Т следующим образом

(4.16)

За единицу частоты принимается частота такого колебания, период которого равен 1с. Эту единицу называют герцем (Гц). Частота в 10 3 Гц называется килогерцем (кГц), в 10 6 Гц, мегагерцем (МГц).

Колебательное движение характеризуется не только смещением х, но также скоростью и ускорением а. Их значения могут быть определены из выражения (4.14).

Продифференцировав (4.14) по времени, получим формулу скорости

. (4.17)

Как видно из (4.17), скорость также изменяется по гармоническому закону, причем амплитуда скорости равна. Из сравнения (4.14) и (4.17) следует, что скорость опережает смещение по фазе на.

Продифференцировав (4.14) еще раз по времени, найдем выражение для ускорения

. (4.18)

Как следует из (4.14) и (4.18), ускорение и смещение находятся в противофазе. Это означает, что в тот момент, когда смещение достигает наибольшего положительного значения, ускорение достигает наибольшего по величине отрицательного значения, и наоборот.

Уравнение плоской бегущей волны

Уравнением волны называется выражение, описывающее зав и симость смещения колеблющейся частицы от координат и времени:

. (4.20)

Пусть точки, расположенные в плоскости, совершают колебания по закону. Колебания частиц среды в точке (рис.4.4), расположенной на рассто я нии от источника колебаний, будут происходить по тому же з а кону, но, будут отставать по времени от колебаний источн и ка на (где - скорость распространения волны). Уравнение колебания этих частиц имеет вид: (4.20)

Рис.4.4

Так как точка была выбрана произвольно, то уравнение (5.7) позволяет определить смещение любой точки среды, вовлеченной в колебательный процесс, в любой момент времени, поэтому называется уравнением плоской бегущей во л ны. В общем случае оно имеет вид:

(4.21)

где – амплитуда волны ; – фаза плоской волны ; – циклическая частота волны ; – начальная фаза колеб а ний .

Подставляя в уравнение (4.21) выражения для скорости () и циклической частоты (), п о лучим:

(4.22)

Если ввести волновое число, то уравнение плоской волны можно записать в виде:

. (4.23)

Скорость в этих уравнениях представляет собой ск о рость перемещения фазы волны, и ее называют фазовой скоростью . Действительно, пусть в волновом процессе фаза постоянна . Для нахождения скорости ее перемещения разделим выражение для фазы на и продифференцируем по врем е ни. Получим:

Откуда.

Стоячая волна. Если в среде одновременно распространяется несколько волн, то выполняется принцип суперпозиции (наложения ): к а ждая волна ведет себя так, как будто другие волны отсутствуют, а результиру ю щее смещение частиц среды в любой момент времени равно геометрической сумме смещений, которые получают част и цы, участвуя в каждом из слагающих волновых проце с сов.

Большой практический интерес представляет наложение двух плоских волн

И, (4.24)

с одинаковыми частотами и амплитудами, распространяющихся навстречу друг другу вдоль оси. Сложив эти уравнения, п о лучим уравнение результирующей волны, называемой стоячей во л н . (4.25)

Таблица 4.1

В бегущей волне

В стоячей волне

Амплитуда колебаний

Все точки среды колеблются с одинаков ыми ампл и туд ами

Все точки среды колеблются с разными а м плитудами

Фаза колебаний

Фаза колебаний зависит от координаты рассматр и ваемой точки

Все точки между двумя узлами колеблются в одинаков ой фаз е . При переходе через узел фаза кол е баний изменяется на.

Перенос энергии

Энергия колебательного движения переносится в направлении распр о странения волны.

Переноса энергии нет, лишь в пределах происходят взаимные превращения энергии.

В точках среды, где ампл и туда волны обращается в ноль (). Эти точки называются узлами () стоячей волны. Координаты узлов.

Расстояние между двумя соседними узлами (или между двумя с о седними пучностями), называемое длиной стоячей волны, равно половине длины бегущ ей волн ы . Таким образом, при сложении двух бегущих волн образуется стоячая волна, узлы и пучности которой находятся все время в одних и тех же местах.

Характеристики бегущей и стоячей волн приведены в табл.5.1.

Осн. 1 , 5 . 6

Доп. 18 , 22 [ 25-44]

Контрольные вопросы:

Осн. 1 , 8 .

Контрольные вопросы:

1. Может ли быть одинаковым давление в двух точках, лежащих на разных уровнях в установленной наклонно сужающейся трубке, по которой течет идеальная жидкость?

2. Почему струя жидкости, вытекающая из отверстия, по мере удаления от отверстия все больше сжимается?

3.Как соотносятся фазы колебания ускорения и смещения при гармонических колебаниях.

ЛЕКЦИЯ №5 Элементы механики сплошных сред
Физическая модель: сплошная среда – это модель вещества, в
рамках которой пренебрегают внутренним строением вещества,
полагая, что вещество непрерывно распределено
по всему
занимаемому им объёму и целиком заполняет этот объём.
Однородной называется среда, имеющая в каждой точке одинаковые
свойства.
Изотропной называется среда, свойства которой одинаковы по всем
направлениям.
Агрегатные состояния вещества
Твердое тело – состояние вещества, характеризующееся
фиксированным объемом и неизменностью формы.
Жидкость

состояние
вещества,
характеризующееся
фиксированным объемом, но не имеющее определенной формы.
Газ – состояние вещества, при котором вещество заполняет весь
предоставленный ему объем.

Механика деформируемого тела
Деформация – изменение формы и размеров тела.
Упругость - свойство тел сопротивляться изменению их объема и
формы под воздействием нагрузок.
Деформация называется упругой, если она исчезает после снятия
нагрузки и – пластической, если она после снятия нагрузки не
исчезает.
В теории упругости доказывается, что все виды деформаций
(растяжение - сжатие, сдвиг, изгиб, кручение) могут быть сведены к
одновременно происходящим деформациям растяжения - сжатия и
сдвига.

Деформация растяжения – сжатия
Растяжение - сжатие - увеличение (или
уменьшение) длины тела цилиндрической или
призматической формы, вызываемое силой,
направленной вдоль продольной его оси.
Абсолютная деформация – величина, равная
изменению
размеров тела, вызванному
внешним воздействием:
l l l0
,
(5.1)
где l0 и l - начальная и конечная длина тела.
Закон Гука (I) (Роберт Гук, 1660 г.): сила
упругости
пропорциональна
величине
абсолютной деформации и направлена в
сторону ее уменьшения:
F k l ,
где k - коэффициент упругости тела.
(5.2)

Относительная деформация:
l l0
.
(5.3)
Механическое напряжение – величина,
характеризующая состояние
деформированного тела =Па:
F S
,
(5.4)
где F - сила, вызывающая деформацию,
S - площадь сечения тела.
Закон Гука (II): Механическое напряжение,
возникающее в теле, пропорционально
величине его относительной деформации:
E
,
(5.5)
где E - модуль Юнга – величина,
характеризующая
упругие
свойства
материала, численно равная напряжению,
возникающему в теле при единичной
относительной деформации, [E]=Па.

Деформации твердых тел подчиняются закону Гука до
известного предела. Связь между деформацией и напряжением
представляется в виде диаграммы напряжений, качественный ход
которой рассмотрен для металлического бруска.

Энергия упругой деформации
При растяжении – сжатии энергия упругой деформации
l
k l 2 1 2
(5.8)
kxdx
E V ,
2
2
0
где V – объем деформируемого тела.
Объемная плотность
растяжении – сжатии
w
энергии
1 2
E
V 2
Объемная плотность
деформации сдвига
упругой
.
энергии
1
w G 2
2
при
(5.9)
упругой
.
деформации
деформации
(5.10)
при

Элементы механики жидкостей и газов
(гидро- и аэромеханика)
Находясь в твердом агрегатном состоянии, тело одновременно
обладает как упругостью формы, так и упругостью объема (или, что
то же самое, при деформациях в твердом теле возникают как
нормальные, так и тангенциальные механические напряжения).
Жидкости
и газы обладают лишь упругостью объема, но не
обладают упругостью формы (они принимают форму сосуда, в
котором
жидкостей
находятся).
и
газов
Следствием
является
этой
общей
одинаковость
в
особенности
качественном
отношении большинства механических свойств жидкостей и газов, а
их отличием являются
лишь
количественные характеристики
(например, как правило, плотность жидкости больше плотности
газа). Поэтому в рамках механики сплошных сред используется
единый подход к изучению жидкостей и газов.

Исходные характеристики
Плотность вещества скалярная физическая величина,
характеризующая распределение массы по объему вещества и
определяемая отношением массы вещества, заключённой в
некотором объёме, к величине этого объёма =м/кг3.
В случае однородной среды плотность вещества рассчитывается по
формуле
m V .
(5.11)
В общем случае неоднородной среды масса и плотность вещества
связаны соотношением
V
(5.12)
m dV .
0
Давление
– скалярная величина, характеризующая состояние
жидкости или газа и равная силе, которая действует на единичную
поверхность в направлении нормали к ней [p]=Па:
p Fn S
.
(5.13)

Элементы гидростатики
Особенности сил, действующих внутри покоящейся жидкости
(газа)
1) Если внутри покоящейся жидкости выделить небольшой объем, то
жидкость на этот объем оказывает одинаковое давление во всех
направлениях.
2) Покоящаяся жидкость действует на соприкасающуюся с ней
поверхность твердого тела с силой, направленной по нормали к этой
поверхности.

Уравнение неразрывности
Трубка тока - часть жидкости, ограниченная линиями тока.
Стационарным (или установившимся) называется такое течение
жидкости, при котором форма и расположение линий тока, а также
значения скоростей в каждой точке движущейся жидкости со
временем не изменяются.
Массовый расход жидкости – масса жидкости, проходящая через
поперечное сечение трубки тока в единицу времени =кг/с:
Qm m t Sv ,
(5.15)
где и v – плотность и скорость течения жидкости в сечении S.

Уравнение
неразрывности

математическое
соотношение,
в
соответствии с которым при стационарном течении жидкости ее
массовый расход в каждом сечении трубки тока один и тот же:
1S1v 1 2S2v 2 или Sv const
,
(5.16)

Несжимаемой называется жидкость, плотность которой не зависит от
температуры и давления.
Объемный расход жидкости – объем жидкости, проходящий через
поперечное сечение трубки тока в единицу времени =м3/с:
QV V t Sv ,
(5.17)
Уравнение неразрывности несжимаемой однородной жидкости –
математическое соотношение, в соответствии с которым при
стационарном течении несжимаемой однородной жидкости ее
объемный расход в каждом сечении трубки тока один и тот же:
S1v 1 S2v 2 или Sv const
,
(5.18)

Вязкость – свойство газов и жидкостей оказывать сопротивление
перемещению одной их части относительно другой.
Физическая модель: идеальная жидкость – воображаемая
несжимаемая жидкость, в которой отсутствуют вязкость и
теплопроводность.
Уравнение Бернулли (Даниил Бернулли 1738 г.) - уравнение,
являющееся
следствием
закона
сохранения
механической
энергии для стационарного потока идеальной несжимаемой жидкости
и записанное для произвольного сечения трубки тока, находящейся в
поле сил тяжести:
v 12
v 22
v 2
gh1 p1
gh2 p2 или
gh p const . (5.19)
2
2
2

В уравнении Бернулли (5.19):
p - статическое давление (давление жидкости на поверхность
обтекаемого ею тела;
v 2
- динамическое давление;
2
gh - гидростатическое давление.

Внутреннее трение (вязкость). Закон Ньютона
Закон Ньютона (Исаак Ньютон, 1686 г.): сила внутреннего трения,
приходящаяся на единицу площади движущихся слоев жидкости или
газа, прямо пропорциональна градиенту скорости движения слоев:
F
S
dv
dy
,
(5.20)
где - коэффициент внутреннего трения (динамическая вязкость),
= м2 /с.

Виды течения вязкой жидкости
Ламинарное течение - форма течение, при которой жидкость или
газ перемещается слоями без перемешивания и пульсаций (то есть
беспорядочных быстрых изменений скорости и давления).
Турбулентное течение - форма течения жидкости или газа, при
которой
их
элементы
совершают
неупорядоченные,
неустановившиеся движения по сложным траекториям, что приводит к
интенсивному перемешиванию между слоями движущихся жидкости
или газа.

Число Рейнольдса
Критерий перехода ламинарного режима течения жидкости в
турбулентный режим основан на использовании числа Рейнольдса
(О́сборн Рéйнольдс, 1876-1883 гг.).
В случае движения жидкости по трубе число Рейнольдса
определяется как
v d
Re
,
(5.21)
где v – средняя по сечению трубы скорость жидкости; d – диаметр
трубы; и - плотность и коэффициент внутреннего трения
жидкости.
При значениях Re<2000 реализуется ламинарный режим течения
жидкости по трубе, а при Re>4000 – турбулентный режим. При
значениях 2000 наблюдается смесь ламинарного и турбулентного потоков).


Рассмотрим течение вязкой жидкости, обратившись непосредственно
к опыту. При помощи резинового шланга подсоединим к водопроводному
крану тонкую горизонтальную стеклянную трубку с впаянными в нее
вертикальными манометрическими трубками (см. рисунок).
При небольшой скорости течения хорошо видно понижение уровня
воды в манометрических трубках в направлении течения (h1>h2>h3). Это
указывает на наличие градиента давления вдоль оси трубки –
статическое давление в жидкости уменьшается по потоку.

Ламинарное течение вязкой жидкости в горизонтальной трубе
При равномерном прямолинейном течении жидкости силы давления
уравновешиваются силами вязкости.

Распределение
сечении
потока
скоростей
вязкой
в
поперечном
жидкости
можно
наблюдать при ее вытекании из вертикальной
трубки через узкое отверстие (см. рисунок).
Если, например, при закрытом кране К налить
вначале
неподкрашенный глицерин, а затем
сверху осторожно добавить подкрашенный, то в
состоянии равновесия граница раздела Г будет
горизонтальной.
Если кран К открыть, то граница примет
форму, похожую на параболоид вращения. Это
указывает
на
существование
распределения
скоростей в сечении трубки при вязком течении
глицерина.

Формула Пуазейля
Распределение скоростей в сечении горизонтальной трубы при
ламинарном течении вязкой жидкости определяется формулой
p 2 2
v r
R r
4 l
,
(5.23)
где R и l радиус и длина трубы, соответственно, p – разность
давлений на концах трубы, r – расстояние от оси трубы.
Объемный расход жидкости определяется формулой Пуазейля
(Жан Пуазейль, 1840 г.):
R 4 p
.
(5.24)
Qv
8 l

Движение тел в вязкой среде
При движении тел в жидкости или газе на тело
действует сила внутреннего трения, зависящая от
скорости движения тела. При малых скоростях
наблюдается
ламинарное
обтекание
тела
жидкостью или газа и сила внутреннего трения
оказывается
пропорциональной
скорости
движения тела и определяется формулой Стокса
(Джордж Стокс, 1851 г.):
F b l v
,
(5.25)
где b – постоянная, зависящая от формы тела и
его ориентации относительно потока, l –
характерный размер тела.
Для шара (b=6 , l=R) сила внутреннего трения:
F 6 Rv
где R – радиус шара.
,

Общие свойства жидкостей и газов. Уравнение равновесия и движение жидкости. Гидростатика несжимаемой жидкости. Стационарное движение идеальной жидкости. Уравнение Бернулли. Идеально упругое тело.Упругие напряжения и деформации. Закон Гука. Модуль Юнга.

Релятивистская механика.

Принцип относительности и преобразования Галилея. Экспериментальные обоснования специальной теории относительности(СТО). Постулаты специальной теории относительности Эйнштейна. Преобразования Лоренца. Понятие одновременности. Относительность длин и промежутков времени. Релятивистский закон сложения скоростей. Релятивистский импульс. Уравнение движения релятивистской частицы. Релятивистское выражение для кинетической энергии. Взаимосвязь массы и энергии. Соотношение между полной энергией и импульсом частицы. Границы применимости классической (ньютоновской) механики.

Основы молекулярной физики и термодинамики

Термодинамические системы.Идеальный газ .

Динамические и статистические закономерности в физике. Статистический и термодинамический методы исследования макроскопических явлений.

Тепловое движение молекул. Взаимодействие между молекулами. Идеальный газ. Состояние системы. Термодинамические параметры состояния. Равновесные состояния и процессы, их изображение на термодинамических диаграммах. Уравнение состояния идеального газа.

Основы молекулярно-кинетической теории.

Основное уравнение молекулярно-кинетической теории идеальных газов и его сравнение с уравнением Клапейрона-Менделеева. Средняя кинетическая энергия молекул. Молекулярно-кинетическое толкование термодинамической температуры. Число степеней свободы молекулы. Закон равномерного распределения энергии по степеням свободы молекул. Внутренняя энергия и теплоемкость идеального газа.

Закон Максвелла для распределения молекул по скоростям и энергиям теплового движения. Идеальный газ в силовом поле. Больцмановское распределение молекул в силовом поле. Барометрическая формула.

Эффективный диаметр молекул. Число столкновений и средняя длина свободного пробега молекул. Явления переноса.

Основы термодинамики.

Работа газа при изменении его объема. Количество теплоты. Первое начало термодинамики. Применение первого начала термодинамики к изопроцессам и адиабатическому процессу идеального газа. Зависимость теплоемкости идеального газа от вида процесса. Второе начало термодинамики. Тепловой двигатель. Круговые процессы. Цикл Карно, коэффициент полезного действия цикла Карно.

3 .Электростатика

Электрическое поле в вакууме.

Закон сохранения электрического заряда. Электрическое поле. Основные характеристики электрического поля: напряженность и потенциал. Напряженность как градиент потенциала. Расчет электростатических полей методом суперпозиции. Поток вектора напряженности. Теорема Остроградского-Гаусса для электростатического поля в вакууме. Применение теоремы Остроградского-Гаусса к расчету поля.

Электрическое поле в диэлектриках.

Свободные и связанные заряды. Типы диэлектриков. Электронная и ориентационная поляризации. Поляризованность. Диэлектрическая восприимчивость вещества. Электрическое смещение. Диэлектрическая проницаемость среды. Вычисление напряженности поля в однородном диэлектрике.

Проводники в электрическом поле.

Поле внутри проводника и у его поверхности. Распределение зарядов в проводнике. Электроемкость уединенного проводника. Взаимная емкость двух проводников. Конденсаторы. Энергия заряженных проводника, конденсатора и системы проводников. Энергия электростатического поля. Объемная плотность энергии.

Постоянный электрический ток

Сила тока. Плотность тока. Условия существования тока. Сторонние силы. Электродвижущая сила источника тока. Закон Ома для неоднородного участка электрической цепи. Правила Кирхгофа. Работа и мощность электрического тока. Закон Джоуля – Ленца. Классическая теория электропроводности металлов. Трудности классической теории.

Электромагнетизм

Магнитное поле в вакууме.

Магнитное взаимодействие постоянных токов. Магнитное поле. Вектор магнитной индукции. Закон Ампера. Магнитное поле тока. Закон Био-Савара-Лапласа и его применение к расчету магнитного поля прямолинейного проводника с током. Магнитное поле кругового тока. Закон полного тока (циркуляция вектора магнитной индукции) для магнитного поля в вакууме и его применение к расчету магнитного поля тороида и длинного соленоида. Магнитный поток. Теорема Остроградского-Гаусса для магнитного поля. Вихревой характер магнитного поля Действие магнитного поля на движущийся заряд. Сила Лоренца. Движение заряженных частиц в магнитном поле. Вращение контура с током в магнитном поле. Работа перемещения проводника и контура с током в магнитном поле.

Электромагнитная индукция.

Явление электромагнитной индукции (опыты Фарадея). Правило Ленца. Закон электромагнитной индукции и его вывод из закона сохранения энергии. Явление самоиндукции. Индуктивность. Токи при замыкании и размыкании электрической цепи, содержащей индуктивность. Энергия катушки с током. Объемная плотность энергии магнитного поля.

Магнитное поле в веществе.

Магнитный момент атомов. Типы магнетиков. Намагниченность. Микро- и макротоки. Элементарная теория диа- и парамагнетизма. Закон полного тока для магнитного поля в веществе. Напряженность магнитного поля. Магнитная проницаемость среды. Ферромагнетики. Магнитный гистерезис. Точка Кюри. Спиновая природа ферромагнетизма.

Уравнения Максвелла.

Фарадеевская и Максвелловская трактовки явления электромагнитной индукции. Ток смещения. Система уравнений Максвелла в интегральной форме.

Колебательное движение

Понятие о колебательных процессах. Единый подход к колебаниям различной физической природы.

Амплитуда, частота, фаза гармонических колебаний. Сложение гармонических колебаний. Векторные диаграммы.

Маятник, груз на пружине, колебательный контур. Свободные затухающие колебания. Дифференциальное уравнение затухающих колебаний Коэффициент затухания, логарифмический декремент, добротность.

Вынужденные колебания при синусоидальном воздействии. Амплитуда и фаза при вынужденных колебаниях. Резонансные кривые. Вынужденные колебания в электрических цепях.

Волны

Механизм образования волн в упругой среде. Продольные и поперечные волны. Плоская синусоидальная волна. Бегущие и стоячие волны. Фазовая скорость, длина волны, волновое число. Одномерное волновое уравнение. Групповая скорость и дисперсия волн. Энергетические соотношения. Вектор Умова. Плоские электромагнитные волны. Поляризация волн. Энергетические соотношения. Вектор Пойнтинга. Излучение диполя. Диаграмма направленности

8 . Волновая оптика

Интерференция света .

Когерентность и монохроматичность световых волн. Расчет интерференционной картины от двух когерентных источников. Опыт Юнга. Интерференция света в тонких пленках. Интерферометры.

Дифракция света.

Принцип Гюйгенса-Френеля. Метод зон Френеля. Прямолинейное распространение света. Дифракция Френеля на круглом отверстии. Дифракция Фраунгофера на одной щели. Дифракционная решетка как спектральный прибор. Понятие о голографическом методе получения и восстановлении изображения.

Поляризация света.

Естественный и поляризовнный свет. Поляризация при отражении. Закон Брюстера. Анализ линейно-поляризованного света. Закон Малюса. Двойное лучепреломление. Искусственная оптическая анизотропия. Электрооптические и магнитооптические эффекты.

Дисперсия света.

Области нормальной и аномальной дисперсии. Электронная теория дисперсии света.

Квантовая природа излучения

Тепловое излучение.

Характеристики теплового излучения. Поглощательная способность. Черное тело. Закон Кирхгофа для теплового излучения. Закон Стефана-Больцмана. Распределение энергии в спектре абсолютно черного тела. Закон смещения Вина. Квантовая гипотеза и формула Планка.

Квантовая природа света.

Внешний фотоэффект и его законы. Уравнение Эйнштейна для внешнего фотоэффекта. Фотоны. Масса и импульс фотона. Давление света. Опыты Лебедева. Квантовое и волновое объяснение давления света. Корпускулярно-волновой дуализм света.


Top