Насыщенные липиды. Липиды - что это такое? Классификация

Липиды – органические вещества, которые: 1) плохо растворимы или нерастворимы в воде, но растворяются в органических растворителях;2) являются настоящими или потенциальными эфирами жирных кислот; 3)усваиваются и используются живыми организмами.

1. Резервные липиды (жиры жировых депо) – кол-во и состав непостоянны, зависят от режима питания и физического состояния организма.

2. Структурные липиды - их кол-во и состав в организме строго постоянны, генетически обусловлены и в норме не зависят от режима питания, функционального состояния организма.

Классификация липидов по химическому строению:

Омыляемые

Неомыляемые

Высшие жирные кислоты

Высшие спирты

Стероиды

Полиизопреноид­ные соединения (терпеноиды,

Каротиноиды)

Нейтральные жиры (МАГ, ДАГ, ТАГ, диольные липиды)

Фосфолипиды

Гликолипиды

Cульфолипиды

Стеролы (холестерол)

Стероидные гормоны

Глицерофосфолипиды (фосфоацилглицеролы)

Сфингофоcфатиды

Фосфатидилэтаноламины

Фосфатидилхолины

Фосфатидилсери-ны

Фосфатидилинозитол

Фосфатидилглицеролы

Дифосфатидилглицеролы (кардиолипины)

Плазмалогены

Цереброзиды

Ганглиозиды

Функции простых липидов :

1. Энергетическая функции (основное Энергетическое топливо клетки) . Преимущества жиров в качестве источников энергии перед углеводами: 1) большая теплотворная способность (1 г ТАГ – 9,3 ккал, а 1г углеводов – 4 ккал). 2) из-за гидрофобности жир откладывается про запас в безводной среде, а значит, он занимает меньший объем. В результате запасов липидов хватает на месяц жизни без пищи, а углеводов – только на сутки.

2. Терморегуляторная функция благодаря: а) жир плохо проводит тепло, поэтому жировая клетчатка хороший теплоизолятор; б) при охлаждении организма на генерирование тепла за счет выделения энергии расходуются все те же ацилглицеролы.

3. Защитная функция (Механическая защита подкожной жировой клетчатки).

4. Источники эндогенной воды в организме . При окислении 100 г ацилглицеролов образуется 107 г воды.

5. Функция естественных растворителей . Ацилглицеролы обеспечивают всасывание в кишечнике незаменимых ЖК и жирорастворимых витаминов.

6. Предшественники эйкозаноидов .

7. Воска выполняют защитные функции

Функции фосфолипидов :

1) главные компоненты биомембран (особенно лецитин, кефалин)

2) фосфатидилинозит-4,5-бисфосфат (производное фосфотидилинозита) – предшественник важных вторичных посредников – ДАГ и ИФ3

3) регуляторы активности ферментов (фосфатидилхолин, фосфатидилсерин, сфингомиелин активируют или ингибируют активность ферментов, катализирующих процессы свертывания крови).

4) ряд гормонов (половые, гормоны коры надпочечников) являются производными липидов

5) детергенты кишечника и желчного пузыря (важным компонентом желчи и мицелл, образуемых в ходе переваривания пищи).

6) источник арахидоновой кислоты - предшественника эйкозаноидов

7) обеспечивают прикрепление белков к мембране (некоторые внеклеточные белки прикрепляются к внешней стороне плазматической мембраны за счет образования ковалентных связей с фосфатидилинозитолом: щелочная фосфатаза, липопротеин липаза, холинэстераза).

8) принимают участие в формировании транспортных форм других липидов;

9) могут выполнять энергетическую функцию

10) являются компонентом сурфактанта легких

Функции гликолипидов в организме :

Функции неомыляемых липидов :

1) холестерол – один из основных компонентов биомембран и ЛП, исходное соединение для синтеза ряда стероидных гормонов.

2) к неомыляемым липидам относятся жирорастворимые витамины (А, Д, Е, К)

Липиды являются производными жирных кислот, спиртов, построенных с помощи сложноэфирной связи. В липидах также встречается простая эфирная связь, фосфоэфирная связь, гликозидная связь. Липидами называют сложную смесь органических соединений с близкими физико-химическими свойствами.

Липиды нерастворимы в воде (гидрофобны), но хорошо растворимы в органических растворителях (бензине, хлороформе). Различают липиды растительного происхождения и животного происхождения. В растениях накапливается в семенах и плодах, больше всего в орехах (до 60 %). У животных липиды концентрируются в подкожных, мозговой, нервных тканях. В рыбе содержится 10-20 % , в мясе свинины до 33 %, в мясе говядины 10 % липидов.

По строению липиды разделяют на две группы:

- простые липиды

- сложные липиды .

К простым липидам относят сложные (жир и масло) или простые (воск) эфиры высших жирных кислот и спиртов.

Строение жиров и масел можно представить общей формулой:

СН 2 - О – СО - R 1

СН – О - СО – R 2

СН 2 - О – СО - R 3

Где: радикалы жирных кислот - R 1 , R 2 , R 3.

Сложные липиды имеют в своем составе соединения, содержащие атомы азота, серы, фосфора. В эту группу относят фосфолипиды. Они представлены фосфотидной кислотой , которая содержат только фосфорную кислоту, занимающую место одного из остатков жирных кислот, и фосфолипидами, в состав которых входят три азотистых основания. Азотистые основания присоединяются к остатку фосфорной кислоты у фосфотидной кислоты. Фосфотидилэтаноламин содержит азотистое основание этаноламин НО - СН 2 – СН 2 - NH 2 . Фосфотидилхолин содержит азотистое основание холин [НО- СН 2 – (СН 3) 3 N]+(ОН), это вещество называют лецитин. Фосфотидилсерин содержит аминокислоту серин НО- СН(NH 2) – СООН.

Сложные липиды содержат остатки углеводов – гликолипиды , остатки белков – липопротеиды , спирт сфингозин (вместо глицерина) содержат сфинголипиды .

Гликолипиды выполняют структурные функции, входят в состав клеточных мембран, в состав клейковины зерна. Чаще всего в составе гликолипидов встречаются моносахариды D- галактоза, D – глюкоза.

Липопротеиды входят в состав клеточных мембран, в протоплазму клеток, влияют на обмен веществ.

Сфинголипиды участвуют в деятельности центральной нервной системы. При нарушении обмена и функционирования сфинголипидов развиваются нарушения в деятельности центральной нервной системы.

Наиболее распространены простые липиды – ацилглицнриды. В состав ацилглицеридов входят спирт глицерин и высокомолекулярные жирные кислоты. Наиболее распространены среди жирных кислот насыщенные кислоты (не содержащие кратных связей) пальмитиновая (С 15 Н 31 СООН) и стеариновая (С 17 Н 35 СООН) кислоты и ненасыщенные кислоты (содержащие кратные связи): олеиновая с одной двойной связью (С 17 Н 33 СООН), линолевая с двумя кратными связями (С 17 Н 31 СООН), линоленовая с тремя кратными связями (С 17 Н 29 СООН). Среди простых липидов главным образом встречаются триацилглицериды (содержат три одинаковых или различных остатка жирных кислот). Однако простые липиды могут быть представлены в виде диацилглицеридов и моноацилглицеридов.


В составе жиров преимущественно находятся насыщенные жирные кислоты. Жиры имеют твердую консистенцию и повышенную температуру плавления. Содержатся преимущественно в липидах животного происхождения. Масла содержат в основном ненасыщенные жирные кислоты, имеют жидкую консистенцию и низкую температуру плавления. Содержатся в липидах растительного происхождения.

Восками называют сложные эфиры, в состав которых входит один высокомолекулярный одноатомный спирт с 18 - 30 атомами углерода, и одна высокомолекулярная жирная кислота с 18 – 30 атомами углерода. Воска встречаются в растительном мире. Воск покрывает очень тонким слоем листья, плоды, предохраняя их от переувлажнения, высыхания, воздействия микроорганизмов. Содержание воска невелико и составляет 0,01 - 0,2 %.

Среди сложных липидов распространены фосфолипиды. В составе фосфолипидов имеются заместители двух типов: гидрофильные и гидрофобные. Гидрофобными выступают радикалы жирных кислот, а гидрофильными - остатки фосфорной кислоты и азотистые основания. Фосфолипиды участвуют в построении мембран клетки, регулируют поступление в клетку питательных веществ.

При извлечении липидов из масличного сырья в масло переходят различные жирорастворимые соединения: фосфолипиды, пигменты, жирорастворимые витамины, стеролы и стерины. Извлекаемая смесь называется «сырой жир». При очистке (рафинировании) растительных масел практически все компоненты, сопутствующие маслам удаляются, что значительно снижает пищевую ценность масла.

Из жирорастворимых пигментов следует отметить группу каротиноидов – предшественников витамина А. По химической природе это углеводороды. Это вещества красно-оранжевого цвета. Хлорофилл – зеленый краситель растений.

Стероиды это циклические соединения, имеющие структуру пергидроциклопентанофенантрена. Из стероидов большое влияние на человека оказывает холистерин. Он участвует в обмене гормонов, желчных кислот.

Спасибо

Сайт предоставляет справочную информацию исключительно для ознакомления. Диагностику и лечение заболеваний нужно проходить под наблюдением специалиста. У всех препаратов имеются противопоказания. Консультация специалиста обязательна!

Что за вещества липиды?

Липиды представляют собой одну из групп органических соединений, имеющую огромное значение для живых организмов. По химической структуре все липиды делятся на простые и сложные. Молекула простых липидов состоит из спирта и желчных кислот, в то время как в состав сложных липидов входят и другие атомы или соединения.

В целом, липиды имеют огромное значение для человека. Эти вещества входят в значительную часть продуктов питания , используются в медицине и фармации, играют важную роль во многих отраслях промышленности. В живом организме липиды в том или ином виде входят в состав всех клеток. С точки зрения питания – это очень важный источник энергии.

Какая разница между липидами и жирами?

В принципе, термин «липиды» происходит от греческого корня, означающего «жир», однако эти определения все же имеют некоторые отличия. Липиды являются более обширной группой веществ, в то время как под жирами понимают лишь некоторые виды липидов. Синонимом «жиров» являются «триглицериды », которые получаются из соединения спирта глицерина и карбоновых кислот. Как липиды в целом, так и триглицериды в частности играют значительную роль в биологических процессах.

Липиды в организме человека

Липиды входят в состав практически всех тканей организма. Их молекулы есть в любой живой клетке, и без этих веществ попросту невозможна жизнь. В организме человека встречается очень много различных липидов. Каждый вид или класс этих соединений имеет свои функции. От нормального поступления и образования липидов зависит множество биологических процессов.

С точки зрения биохимии, липиды принимают участие в следующих важнейших процессах:

  • выработка организмом энергии;
  • деление клеток;
  • передача нервных импульсов;
  • образование компонентов крови, гормонов и других важных веществ;
  • защита и фиксация некоторых внутренних органов;
  • клеточное деление, дыхание и др.
Таким образом, липиды являются жизненно важными химическими соединениями. Значительная часть этих веществ поступает в организм с пищей. После этого структурные компоненты липидов усваиваются организмом, и клетки вырабатывают новые молекулы липидов.

Биологическая роль липидов в живой клетке

Молекулы липидов выполняют огромное количество функций не только в масштабах всего организма, но и в каждой живой клетке в отдельности. По сути, клетка представляет собой структурную единицу живого организма. В ней происходит усвоение и синтез (образование ) определенных веществ. Часть из этих веществ идет на поддержание жизнедеятельности самой клетки, часть – на деление клетки, часть – на потребности других клеток и тканей.

В живом организме липиды выполняют следующие функции:

  • энергетическая;
  • резервная;
  • структурная;
  • транспортная;
  • ферментативная;
  • запасающая;
  • сигнальная;
  • регуляторная.

Энергетическая функция

Энергетическая функция липидов сводится к их распаду в организме, в процессе которого выделяется большое количество энергии. Живым клеткам эта энергия необходима для поддержания различных процессов (дыхание, рост, деление, синтез новых веществ ). Липиды поступают в клетку с притоком крови и откладываются внутри (в цитоплазме ) в виде небольших капель жира. При необходимости эти молекулы расщепляются, и клетка получает энергию.

Резервная (запасающая ) функция

Резервная функция тесно связана с энергетической. В форме жиров внутри клеток энергия может откладываться «про запас» и выделяться по мере необходимости. За накопление жиров ответственны особые клетки – адипоциты. Большая часть их объема занята крупной каплей жира. Именно из адипоцитов состоит жировая ткань в организме. Наибольшие запасы жировой ткани находятся в подкожно-жировой клетчатке, большом и малом сальнике (в брюшной полости ). При длительном голодании жировая ткань постепенно распадается, так как для получения энергии используются резервы липидов.

Также жировая ткань, отложенная в подкожно-жировой клетчатке, осуществляет теплоизоляцию. Ткани, богатые липидами, в целом хуже проводят тепло. Это позволяет организму поддерживать постоянную температуру тела и не так быстро охлаждаться или перегреваться в различных условиях внешней среды.

Структурная и барьерная функции (мембранные липиды )

Огромную роль играют липиды в строении живых клеток. В человеческом организме эти вещества образуют особый двойной слой, который формирует клеточную стенку. Благодаря этому живая клетка может выполнять свои функции и регулировать обмен веществ с внешней средой. Липиды, образующие клеточную мембрану, также позволяют сохранять форму клетки.

Почему липиды-мономеры образуют двойной слой (бислой )?

Мономерами называются химические вещества (в данном случае – молекулы ), которые способны, соединяясь, формировать более сложные соединения. Клеточная стенка состоит из двойного слоя (бислоя ) липидов. Каждая молекула, образующая эту стенку, имеет две части – гидрофобную (не контактирующую с водой ) и гидрофильную (контактирующую с водой ). Двойной слой получается из-за того, что молекулы липидов развернуты гидрофильными частями внутрь клетки и кнаружи. Гидрофобные же части практически соприкасаются, так как находятся между двумя слоями. В толще липидного бислоя могут располагаться и другие молекулы (белки, углеводы, сложные молекулярные структуры ), которые регулируют прохождение веществ через клеточную стенку.

Транспортная функция

Транспортная функция липидов имеет второстепенное значение в организме. Ее выполняют лишь некоторые соединения. Например, липопротеины, состоящие из липидов и белков, переносят в крови некоторые вещества от одного органа к другому. Однако эту функцию редко выделяют, не считая ее основной для данных веществ.

Ферментативная функция

В принципе, липиды не входят в состав ферментов, участвующих в расщеплении других веществ. Однако без липидов клетки органов не смогут синтезировать ферменты , конечный продукт жизнедеятельности. Кроме того, некоторые липиды играют значительную роль в усвоении поступающих с пищей жиров. В желчи содержится значительное количество фосфолипидов и холестерина . Они нейтрализуют избыток ферментов поджелудочной железы и не дают им повредить клетки кишечника . Также в желчи происходит растворение (эмульгирование ) экзогенных липидов, поступающих с пищей. Таким образом, липиды играют огромную роль в пищеварении и помогают в работе других ферментов, хотя сами по себе ферментами не являются.

Сигнальная функция

Часть сложных липидов выполняет в организме сигнальную функцию. Она заключается в поддержании различных процессов. Например, гликолипиды в нервных клетках принимают участие в передаче нервного импульса от одной нервной клетки к другой. Кроме того, большое значение имеют сигналы внутри самой клетки. Ей необходимо «распознавать» поступающие с кровью вещества, чтобы транспортировать их внутрь.

Регуляторная функция

Регуляторная функция липидов в организме является второстепенной. Сами липиды в крови мало влияют на течение различных процессов. Однако они входят в состав других веществ, имеющих огромное значение в регуляции этих процессов. Прежде всего, это стероидные гормоны (гормоны надпочечников и половые гормоны ). Они играют важную роль в обмене веществ, росте и развитии организма, репродуктивной функции, влияют на работу иммунной системы. Также липиды входят в состав простагландинов . Эти вещества вырабатываются при воспалительных процессах и влияют на некоторые процессы в нервной системе (например, восприятие боли ).

Таким образом, сами липиды не выполняют регуляторной функции, но их недостаток может отразиться на многих процессах в организме.

Биохимия липидов и их связь с другими веществами (белки, углеводы, АТФ, нуклеиновые кислоты, аминокислоты, стероиды )

Обмен липидов тесно связан с обменом других веществ в организме. В первую очередь, эта связь прослеживается в питании человека. Любая пища состоит из белков, углеводов и липидов, которые должны попадать в организм в определенных пропорциях. В этом случае человек будет получать и достаточно энергии, и достаточно структурных элементов. В противном случае (например, при недостатке липидов ) для выработки энергии будут расщепляться белки и углеводы.

Также липиды в той или иной степени связаны с обменом следующих веществ:

  • Аденозинтрифосфорная кислота (АТФ ). АТФ является своеобразной единицей энергии внутри клетки. При расщеплении липидов часть энергии идет на производство молекул АТФ, а эти молекулы принимают участие во всех внутриклеточных процессах (транспорт веществ, деление клетки, нейтрализация токсинов и др. ).
  • Нуклеиновые кислоты. Нуклеиновые кислоты являются структурными элементами ДНК и находятся в ядрах живых клеток. Энергия, вырабатываемая при расщеплении жиров, идет отчасти и на деление клеток. Во время деления происходит образование новых цепочек ДНК из нуклеиновых кислот.
  • Аминокислоты. Аминокислоты – это структурные компоненты белков. В соединении с липидами они образуют сложные комплексы, липопротеины, отвечающие за транспорт веществ в организме.
  • Стероиды. Стероиды – это вид гормонов, содержащих значительное количество липидов. При плохом усвоении липидов из пищи у пациента могут начаться проблемы с эндокринной системой.
Таким образом, обмен липидов в организме в любом случае нужно рассматривать в комплексе, с точки зрения взаимосвязи с другими веществами.

Переваривание и всасывание липидов (обмен веществ, метаболизм )

Переваривание и всасывание липидов является первым этапом обмена этих веществ. Основная часть липидов попадает в организм с пищей. В ротовой полости происходит измельчение пищи и ее смешивание со слюной. Далее комок попадает желудок , где химические связи частично разрушаются под действием соляной кислоты. Также некоторые химические связи в липидах разрушаются под действием фермента липазы , содержащейся в слюне.

Липиды нерастворимы в воде, поэтому в двенадцатиперстной кишке они не сразу подвергаются расщеплению ферментами. Сначала происходит так называемое эмульгирование жиров. После этого химические связи расщепляются под действием липазы, поступающей из поджелудочной железы. В принципе, для каждого вида липидов сейчас определен свой фермент, отвечающий за расщепление и усвоение данного вещества. Например, фосфолипаза расщепляет фосфолипиды, холестеролэстераза – соединения холестерола и т. д. Все эти ферменты в том или ином количестве содержатся в соке поджелудочной железы.

Расщепленные фрагменты липидов всасываются по отдельности клетками тонкого кишечника. В целом переваривание жиров представляет собой весьма сложный процесс, который регулируется множеством гормонов и гормоноподобных веществ.

Что такое эмульгирование липидов?

Эмульгирование представляет собой неполное растворение жировых веществ в воде. В пищевом комке, попадающем в двенадцатиперстную кишку, жиры содержатся в виде крупных капель. Это препятствует их взаимодействию с ферментами. В процессе эмульгирования крупные жировые капли «дробятся» на капельки поменьше. В результате площадь соприкосновения жировых капель и окружающих водорастворимых веществ увеличивается, и становится возможным расщепление липидов.

Процесс эмульгирования липидов в пищеварительной системе проходит в несколько этапов:

  • На первом этапе печень вырабатывает желчь, которая и будет осуществлять эмульгирование жиров. Она содержит соли холестерина и фосфолипидов, которые взаимодействуют с липидами и способствуют их «дроблению» на мелкие капли.
  • Желчь, выделяемая из печени , скапливается в желчном пузыре. Здесь она концентрируется и выделяется по мере необходимости.
  • При потреблении жирной пищи, к гладким мышцам желчного пузыря поступает сигнал для сокращения. В результате порция желчи по желчевыводящим протокам выделяется в двенадцатиперстную кишку.
  • В двенадцатиперстной кишке происходит собственно эмульгирование жиров и их взаимодействие с ферментами поджелудочной железы. Сокращения стенок тонкого кишечника способствуют этому процессу, «перемешивая» содержимое.
У некоторых людей после удаления желчного пузыря могут возникнуть проблемы с усвоением жиров. Желчь поступает в двенадцатиперстную кишку непрерывно, непосредственно из печени, и ее не хватает для эмульгирования всего объема липидов, если их съедено слишком много.

Ферменты для расщепления липидов

Для переваривания каждого вещества в организме присутствуют свои ферменты. Их задача состоит в разрушении химических связей между молекулами (или между атомами в молекулах ), чтобы полезные вещества могли нормально усваиваться организмом. За расщепления различных липидов отвечают разные ферменты. Большинство из них содержится в соке, выделяемом поджелудочной железой.

За расщепление липидов отвечают следующие группы ферментов:

  • липазы;
  • фосфолипазы;
  • холестеролэстераза и др.

Какие витамины и гормоны участвуют в регуляции уровня липидов?

Уровень большинства липидов в крови человека относительно постоянен. Он может колебаться в определенных пределах. Зависит это от биологических процессов, протекающих в самом организме, и от ряда внешних факторов. Регуляция уровня липидов в крови является сложным биологическим процессом, в котором принимает участие множество различных органов и веществ.

Наибольшую роль в усвоении и поддержании постоянного уровня липидов играют следующие вещества:

  • Ферменты. Ряд ферментов поджелудочной железы принимает участие в расщеплении липидов, поступающих в организм с пищей. При недостатке этих ферментов уровень липидов в крови может понизиться, так как эти вещества просто не будут усваиваться в кишечнике.
  • Желчные кислоты и их соли. В желчи содержатся желчные кислоты и ряд их соединений, которые способствуют эмульгированию липидов. Без этих веществ также невозможно нормальное усвоение липидов.
  • Витамины. Витамины оказывают комплексное укрепляющее действие на организм и прямо или косвенно влияют также на обмен липидов. Например, при недостатке витамина А ухудшается регенерация клеток в слизистых оболочках, и переваривание веществ в кишечнике тоже замедляется.
  • Внутриклеточные ферменты. В клетках эпителия кишечника содержатся ферменты, которые после всасывания жирных кислот преобразуют их в транспортные формы и направляют в кровоток.
  • Гормоны. Ряд гормонов влияет на обмен веществ в целом. Например, высокий уровень инсулина может сильно влиять на уровень липидов в крови. Именно поэтому для пациентов с сахарным диабетом некоторые нормы пересмотрены. Гормоны щитовидной железы , глюкокортикоидные гормоны или норадреналин могут стимулировать распад жировой ткани с выделением энергии.
Таким образом, поддержание нормального уровня липидов в крови – весьма сложный процесс, на который прямо или косвенно влияют разные гормоны, витамины и другие вещества. В процессе диагностики врачу необходимо определить, на каком именно этапе этот процесс был нарушен.

Биосинтез (образование ) и гидролиз (распад ) липидов в организме (анаболизм и катаболизм )

Метаболизмом называется совокупность обменных процессов в организме. Все метаболические процессы можно разделить на катаболические и анаболические. К катаболическим процессам относится расщепление и распад веществ. В отношении липидов это характеризуется их гидролизом (распадом на более простые вещества ) в желудочно-кишечном тракте. Анаболизм объединяет биохимические реакции, направленные на образование новых, более сложных веществ.

Биосинтез липидов происходит в следующих тканях и клетках:

  • Клетки эпителия кишечника. В стенке кишечника происходит всасывание жирных кислот, холестерина и других липидов. Сразу после этого в этих же клетках образуются новые, транспортные формы липидов, которые попадают в венозную кровь и направляются в печень.
  • Клетки печени. В клетках печени часть транспортных форм липидов распадется, и из них синтезируются новые вещества. Например, здесь происходит образование соединений холестерина и фосфолипидов, которые затем выделяются с желчью и способствуют нормальному пищеварению.
  • Клетки других органов. Часть липидов попадает с кровью в другие органы и ткани. В зависимости от типа клеток, липиды преобразуются в определенный вид соединений. Все клетки, так или иначе, синтезируют липиды для образования клеточной стенки (липидного бислоя ). В надпочечниках и половых железах из части липидов синтезируются стероидные гормоны.
Совокупность вышеописанных процессов и составляет метаболизм липидов в человеческом организме.

Ресинтез липидов в печени и других органах

Ресинтезом называется процесс образования определенных веществ из более простых, которые были усвоены раньше. В организме этот процесс протекает во внутренней среде некоторых клеток. Ресинтез необходим, для того чтобы ткани и органы получали все необходимые виды липидов, а не только те, которые были употреблены с пищей. Ресинтезированные липиды называются эндогенными. На их образование организм затрачивает энергию.

На первом этапе ресинтез липидов происходит в стенках кишечника. Здесь поступающие с пищей жирные кислоты преобразуются в транспортные формы, которые отправятся с кровью в печень и другие органы. Часть ресинтезированных липидов будет доставлено в ткани, из другой части образуются необходимые для жизнедеятельности вещества (липопротеины, желчь, гормоны и др. ), избыток преобразуется в жировую ткань и откладывается «про запас».

Входят ли липиды в состав мозга?

Липиды являются очень важной составляющей частью нервных клеток не только в головном мозге , но и во всей нервной системе. Как известно, нервные клетки контролируют различные процессы в организме путем передачи нервных импульсов. При этом все нервные пути «изолированы» друг от друга, чтобы импульс приходил к определенным клеткам и не затрагивал другие нервные пути. Такая «изоляция» возможна благодаря миелиновой оболочке нервных клеток. Миелин, препятствующий хаотичному распространению импульсов, примерно на 75% состоит из липидов. Как и в клеточных мембранах, здесь они образуют двойной слой (бислой ), который несколько раз завернут вокруг нервной клетки.

В состав миелиновой оболочки в нервной системе входят следующие липиды:

  • фосфолипиды;
  • холестерин;
  • галактолипиды;
  • гликолипиды.
При некоторых врожденных нарушениях образования липидов возможны неврологические проблемы. Это объясняется именно истончением или прерыванием миелиновой оболочки.

Липидные гормоны

Липиды играют важную структурную роль, в том числе, присутствуя в структуре многих гормонов. Гормоны, в состав которых входят жирные кислоты, называют стероидными. В организме они вырабатываются половыми железами и надпочечниками. Некоторые из них присутствуют и в клетках жировой ткани. Стероидные гормоны принимают участие в регуляции множества жизненно важных процессов. Их дисбаланс может повлиять на массу тела, способность к зачатию ребенка , развитие любых воспалительных процессов, работу иммунной системы. Залогом нормальной выработки стероидных гормонов является сбалансированное потребление липидов.

Липиды входят в состав следующих жизненно важных гормонов:

  • кортикостероиды (кортизол , альдостерон , гидрокортизон и др. );
  • мужские половые гормоны - андрогены (андростендион, дигидротестостерон и др. );
  • женские половые гормоны - эстрогены (эстриол, эстрадиол и др. ).
Таким образом, недостаток некоторых жирных кислот в пище может серьезно отразиться на работе эндокринной системы.

Роль липидов для кожи и волос

Большое значение имеют липиды для здоровья кожи и ее придатков (волосы и ногти ). В коже содержатся так называемые сальные железы, которые выделяют на поверхность некоторое количество секрета, богатого жирами. Это вещество выполняет множество полезных функций.

Для волос и кожи липиды важны по следующим причинам:

  • значительная часть вещества волоса состоит из сложных липидов;
  • клетки кожи быстро меняются, и липиды важны как энергетический ресурс;
  • секрет (выделяемое вещество ) сальных желез увлажняет кожу;
  • благодаря жирам поддерживается упругость, эластичность и гладкость кожи;
  • небольшое количество липидов на поверхности волос придают им здоровый блеск;
  • липидный слой на поверхности кожи защищает ее от агрессивного воздействия внешних факторов (холод, солнечные лучи, микробы на поверхности кожи и др. ).
В клетки кожи, как и в волосяные луковицы, липиды поступают с кровью. Таким образом, нормальное питание обеспечивает здоровье кожи и волос. Использование шампуней и кремов, содержащих липиды (особенно незаменимые жирные кислоты ) также важно, потому что часть этих веществ будет впитываться с поверхности клеток.

Классификация липидов

В биологии и химии существует довольно много различных классификаций липидов. Основной является химическая классификация, согласно которой липиды делятся в зависимости от своей структуры. С этой точки зрения все липиды можно разделить на простые (состоящие только из атомов кислорода, водорода и углерода ) и сложные (включающие хотя бы один атом других элементов ). Каждая из этих групп имеет соответствующие подгруппы. Эта классификация наиболее удобна, так как отражает не только химическое строение веществ, но и частично определяет химические свойства.

В биологии и медицине имеются свои дополнительные классификации, использующие другие критерии.

Экзогенные и эндогенные липиды

Все липиды в организме человека можно разделить на две большие группы - экзогенные и эндогенные. В первую группу входят все вещества, попадающие в организм из внешней среды. Наибольшее количество экзогенных липидов попадает в организм с пищей, однако существуют и другие пути. Например, при применении различных косметических средств или лекарственных препаратов организм также может получать некоторое количество липидов. Их действие будет преимущественно локальным.

После попадания в организм все экзогенные липиды расщепляются и усваиваются живыми клетками. Здесь из их структурных компонентов будут сформированы другие липидные соединения, в которых нуждается организм. Эти липиды, синтезированные собственными клетками, называются эндогенными. Они могут иметь совершенно другую структуру и функции, но состоят из тех же «структурных компонентов», которые попали в организм с экзогенными липидами. Именно поэтому при недостатке в пище тех или иных видов жиров могут развиваться различные заболевания. Часть компонентов сложных липидов не может быть синтезирована организмом самостоятельно, что отражается на течении определенных биологических процессов.

Жирные кислоты

Жирными кислотами называется класс органических соединений, которые являются структурной часть липидов. В зависимости от того, какие именно жирные кислоты входят в состав липида, могут меняться свойства этого вещества. Например, триглицериды, важнейший источник энергии для человеческого организма, являются производными спирта глицерина и нескольких жирных кислот.

В природе жирные кислоты содержатся в самых разных веществах - от нефти до растительных масел. В организм человека они попадают в основном с пищей. Каждая кислота является структурным компонентом для определенных клеток, ферментов или соединений. После всасывания организм преобразует ее и использует в различных биологических процессах.

Наиболее важными источниками жирных кислот для человека являются:

  • животные жиры;
  • растительные жиры;
  • тропические масла (цитрусовое, пальмовое и др. );
  • жиры для пищевой промышленности (маргарин и др. ).
В организме человека жирные кислоты могут откладываться в жировой ткани в составе триглицеридов либо циркулировать в крови. В крови они содержатся как в свободном виде, так и в виде соединений (различные фракции липопротеинов ).

Насыщенные и ненасыщенные жирные кислоты

Все жирные кислоты по своей химической структуре делятся на насыщенные и ненасыщенные. Насыщенные кислоты менее полезны для организма, а некоторые из них даже вредны. Это объясняется тем, что в молекуле этих веществ нет двойных связей. Это химически стабильные соединения, и они хуже усваиваются организмом. В настоящее время доказана связь некоторых насыщенных жирных кислот с развитием атеросклероза .

Ненасыщенные жирные кислоты делятся на две большие группы:

  • Мононенасыщенные. Данные кислоты имеют в своей структуре одну двойную связь и являются, таким образом, более активными. Считается, что их употребление в пищу может понижать уровень холестерина и препятствовать развитию атеросклероза. Наибольшее количество мононенасыщенных жирных кислот содержится в ряде растений (авокадо , оливки, фисташки, лесные орехи ) и, соответственно, в маслах, получаемых из этих растений.
  • Полиненасыщенные. Полиненасыщенные жирные кислоты имеют в своей структуре несколько двойных связей. Отличительной особенностью этих веществ является то, что человеческий организм не способен их синтезировать. Другими словами, если в организм не будут поступать с пищей полиненасыщенные жирные кислоты, со временем это неизбежно приведет к определенным нарушениям. Лучшими источниками этих кислот являются морепродукты, соевое и льняное масло, семена кунжута , мака , пророщенная пшеница и др.

Фосфолипиды

Фосфолипиды являются сложными липидами, содержащими в своем составе остаток фосфорной кислоты. Эти вещества наряду с холестерином являются основным компонентом клеточных мембран. Также эти вещества принимают участие в транспорте других липидов в организме. С медицинской точки зрения фосфолипиды могут выполнять и сигнальную роль. Например, они входят в состав желчи, так как способствуют эмульгированию (растворению ) других жиров. В зависимости от того, какого вещества в желчи больше, холестерина или фосфолипидов, можно определить риск развития желчекаменной болезни .

Глицерин и триглицериды

По химической структуре глицерин не является липидом, однако он является важным структурным компонентом триглицеридов. Это группа липидов, играющих огромную роль в организме человека. Наиболее важной функцией этих веществ является поставка энергии. Триглицериды, попадающие в организм с пищей, расщепляются на глицерин и жирные кислоты. В результате выделяется очень большое количество энергии, которая идет на работу мышц (скелетных мышц, мышцы сердца и др. ).

Жировая ткань в организме человека представлена в основном триглицеридами. Большая часть этих веществ, перед тем как отложиться в жировой ткани, претерпевает некоторые химические трансформации в печени.

Бета-липиды

Бета-липидами иногда называют бета-липопротеиды. Двойственность названия объясняется различиями в классификациях. Это одна из фракций липопротеинов в организме, которая играет важную роль в развитии некоторых патологий. Прежде всего, речь идет об атеросклерозе. Бета-липопротеиды транспортируют холестерол от одних клеток к другим, но в силу особенностей строения молекул, этот холестерол часто «застревает» в стенках сосудов, образуя атеросклеротические бляшки и препятствуя нормальному току крови. Перед применением необходимо проконсультироваться со специалистом.

Строение липидов, жирные кислоты

Липиды – достаточно большая группа органических соединений, присутствующие во всех живых клетках, которые в воде не растворяются, но в неполярных органических растворителях растворяются хорошо (бензине, эфире, хлороформе, бензоле, и др.).

Замечание 1

Липиды отличаются большим разнообразием химической структуры, однако настоящие липиды – это сложные эфиры жирных кислот и любого спирта.

У жирных кислот молекулы небольшие и имеют длинную цепь, состоящую чаще всего из 19 или 18 атомов углерода. В состав молекулы также входят атомы водорода и карбоксильная группа (-СООН). Их углеводородные «хвосты» гидрофобные, а карбоксильная группа гидрофильная, потому легко образуются эфиры.

Иногда в жирных кислотах присутствует одна или несколько двойных связей (С – С). В этом случае жирные кислоты, а также липиды, которые их содержат, называются ненасыщенными .

Жирные кислоты и липиды, в молекулах которых отсутствуют двойные связи, называются насыщенными . Они образуются присоединением дополнительной пары атомов водорода по месту двойной связи ненасыщенной кислоты.

Ненасыщенные жирные кислоты плавятся при более низких температурах, чем насыщенные.

Пример 1

Олеиновая кислота (Тпл. = 13,4˚С) при комнатной температуре жидкая, тогда как пальмитиновая и стеариновая кислоты (Тпл. составляет 63,1 и 69,9˚С соответственно) при этих условиях остаются твёрдыми.

Определение 1

Большинство липидов - это сложные эфиры, образованные трёхатомным спиртом глицерином и тремя остатками жирных кислот. Эти соединения называют триглицеридами , или триацилглицеролами .

Жиры и масла

Липиды делятся на жиры и масла . Это зависит от того, в каком состоянии они остаются при комнатной температуре: твёрдом (жиры), или жидком (масла).

Температура плавления липидов тем ниже, чем большая в них доля ненасыщенных жирных кислот.

В маслах, как правило, больше ненасыщенных жирных кислот, чем в жирах.

Пример 2

В организме животных, обитающих в холодных климатических зонах (рыбы арктических морей) обычно больше ненасыщенных триацилглицеролов, чем у обитателей южных широт. Потому их тело сохраняет гибкость и при низких температурах окружающей среды.

Функции липидов

К важным группам липидов относятся также

  • стероиды (холестерол, желчные кислоты, витамин D, половые гормоны, и др.),
  • терпены (каротиноиды, витамин К, вещества роста растений – гиббереллины),
  • воски,
  • фосфолипиды,
  • гликолипиды,
  • липопротеиды.

Замечание 2

Липиды являются важным источником энергии.

В результате окисления липиды дают вдвое больше энергии, чем белки и углеводы, то есть являются экономичной формой сохранения запасных питательных веществ. Это связано с тем, что липиды содержат больше водорода и совсем мало кислорода в сравнении с белками и углеводами.

Пример 3

Впадающие в спячку животные накопляют жиры, а растения в состоянии покоя – масла. Тратят их позже в процессе жизнедеятельности. Благодаря высокому содержанию липидов, семена растений обеспечивают энергией процесс развития зародыша и ростка, пока он не перейдёт к самостоятельному питанию. Семена многих растений (подсолнечника, сои, льна, кукурузы, горчицы, кокосовой пальмы, клещевины и др.) являются сырьём для получения масел промышленным способом.

Благодаря нерастворимости в воде липиды являются важным структурным компонентом клеточных мембран, состоящих в основном из фосфолипидов. Кроме того, они содержат гликолипиды и липопротеиды.

Классификация липидов достаточно обширна. Подобные вещества могут иметь отличимое химическое строение. Каждому классу компонентов присуща разная растворимость в природной воде и других органических соединениях. Подобные компоненты обеспечивают и принимают активное участие в процессах жизненной активности организма человека.

Стоит заметить тот факт, что некоторые классы липидов являются основным структурным составляющим мембран. Композиты выполняют оптимизацию процессов протекания межклеточных контактов и протекание этапов отдачи нервных импульсов. Соединения обеспечивают нормализацию проницаемости мембран клеток. Они присутствуют в организме всех живых существ, но у млекопитающих занимают другие функции.

Как уже известно, подобные вещества имеют различный химический состав, следовательно, основная классификация подразумевает биение компонентов и разделение их на разные классы именно по этому признаку.

Составы, молекулы которых вмещают в себя остатки жирных соединений и спирта – простые липиды. К подобной группе композитов относят:

  • триглицериды;
  • нейтральные глицериды;
  • воски.

Строение липидов предопределяет тот факт, что триглицериды и нейтральные глицериды относятся к липидам.

К классу липидов сложного строения относятся такие элементы:

  • фосфолипиды – составляющие являются производными ортофосфорной кислоты;
  • гликолипиды – содержат сахара в остаточном количестве;
  • стериды;
  • стерины.

Все перечисленные компоненты относятся к липидам, но имеют различный химический состав и способ образования в биологическом материале конкретного индивида.

Важно знать! Определенный термин химическая фракция нельзя отделять в качестве структурной характеристики элемента.

Классификация липидов подразумевает то, что все составы, относящиеся по строению к данному классу, имеют сходные особенности. Такая обеспеченность обуславливается за счет биологических особенностей композитов и возможности к растворенности.

Общие сведения

В организме человека жировые композиты концентрируются в свободном состоянии и имеют особенность к обеспечению функции фундаментальных блоков, для каждого класса химических структур.

Внимание! Ткани и клетки существующих живых организмов позволяют получать более 70 наименований жировых составов.

Основы, встречающиеся в естественной среде можно вариативно распределить на 3 всеобъемлющие группы:

  • насыщенные;
  • мононенасыщенные;
  • полиненасыщенные.

Top